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Abstract

Mutation is a fundamental process in biology.  Mutation is necessary for

evolution and lies at the heart of human disease.  Variation in the rate at which mutations

are produced can have profound consequences.  Microorganisms that generate mutations

at a higher rate have a selective advantage when adapting to novel environments, and this

may play an important role in pathogenesis.  An increase in the mutation rate of somatic

cells may be a necessary step in the evolution of cancer, and individuals who inherit an

elevated mutation rate are predisposed to developing the disease.  For these reasons, the

study of mutation rate variation has attracted great attention and impacted our

understanding of nearly every aspect of biology from the dynamics of evolution, the

mechanisms of bacterial pathogenesis, the functioning of the immune system, and the

development of cancer.  Despite its importance, the degree to which mutation rate can

vary and the mechanisms underlying this variation are not entirely understood.  A

common method used to measure mutation rate is the fluctuation assay.  I have increased

the throughput of this assay and used it to characterize mutation rate variation in the

budding yeast, Saccharomyces cerevisiae.  I show that mutation rate is robust to variation
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in the duration of the cell cycle, but varies between strain backgrounds, between

environments, and within the genome.  I show that mutation rate varies between two

common laboratory yeast strains and that mutation rate is increased under osmotic stress,

consistent with the hypothesis that high salt induces strand breaks.  In addition, I show

that the mutation rate in the yeast genome is correlated with replication timing, consistent

with a model regarding the temporal segregation of two modes of DNA damage tolerance

during replication:  error-free DNA damage tolerance and translesion synthesis.  In

support of this model, I show that elimination of translesion synthesis reduces mutation

rate variation within the genome.



v

Contents

Abstract iii

List of figures vii

List of tables ix

Acknowledgements x

Preface xiii

Chapter 1 Introduction 1

1.1 The importance of mutation rate 2

1.2 Examples of mutation rate variation 8

1.3 Summary 16

Chapter 2 Improving the performance and analysis of fluctuation assays 19

2.1 Materials and methods 20

2.2 Methods for measuring mutation rate 27

2.3 Fluctuation assays 29

2.4 Phenotypic mutation rates 34

Chapter 3 Effective target size and the per-base-pair mutation rate 39

3.1 Materials and methods 40

3.2 Mutational spectra 42

3.3 Effective target size 52

3.4 Mutation rate per base pair per generation 59

Chapter 4 Mutation rate variation I:  Variation across the yeast genome 62

4.1 Introduction 63

4.2 Materials and methods 66

4.3 Mutation rate varies across Chromosome VI 76

4.4 Mutation rate is correlated with replication timing 81



vi

4.5 Model for replication timing and mutation rate 87

4.6 Discussion 90

Chapter 5 Mutation rate variation II:  Variation with the duration

of the cell cycle, environment, and strain background 97

5.1 Materials and methods 98

5.2 Mutations occur at a constant rate per cell division 100

5.3 Elevation of mutation rate under osmotic stress 101

5.4 Fixation of a mutator allele in a laboratory strain 108

Chapter 6 Conclusions and future directions 113

6.1 Summary of major results 114

6.2 The concept of effective target size 115

6.3 Deviations from the Luria-Delbrück distribution 117

6.4 Mutation rate variation between strain backgrounds 119

6.5 The role of mutator strains in evolution 120

6.6 The importance of mismatch repair in mutation rate variation 124

6.7 The molecular basis of mutation rate 125

6.8 Genome structure, function, and evolution 127

Appendix A Notes and observations 130

A.1 Variability of mutation rate estimates from fluctuation assays 131

A.2 An alternative method for measuring mutation rates 131

A.3 Mutations observed in the yeast deletion collection 135

A.4 Growth of W303 and S288c on 5FOA 137

A.5 Selection for multiple mutations on 5FOA 139

A.6 Decreased cold tolerance in msh2Δ strains 141

Appendix B Programs to analyze data from fluctuation assays 143

References 147



vii

List of figures

Chapter 2

2-1 The fluctuation assay 22

2-2 Fluctuation assay on 5FOA 24

2-3 Fluctuation assay on 10 x canavanine 25

2-4 Fitting data from fluctuation assays 31

2-5 Simulation of fluctuation assays 38

Chapter 3

3-1 Mutational spectra for 5FOA resistant ura3 mutants 43

3-2 Mutational spectra for canavanine resistant can1 mutants 44

3-3 Probability of in-frame slippage events in the yeast genome 51

Chapter 4

4-1 Schematic of strain construction 72

4-2 Coverage of Chromosome VI 73

4-3 Mutation rate varies across Chromosome VI 77

4-4 Pairwise comparisons of mutation rates at URA3 and CAN1 79

4-5 Mutation rate is correlated with replication timing 82

4-6 Comparison of replication timing and mutation rate 84

4-7 A model for template switching and translesion synthesis 88

4-8 Mutation rate variation is dependent upon translesion synthesis 91

4-9 Synonymous substitution rate and mutation rate 95

Chapter 5

5-1 Mutations occur at a constant rate per cell division 102

5-2 Mutation rate increases under osmotic stress 104

5-3 Salt sensitivity of rad52Δ strains 107



viii

5-4 Mutation rate variation between common laboratory strains 110

5-5 A derived laboratory strain of W303 contains a single mutator allele 112

Appendix A

A-1 Comparison of growth on 5FOA 138

A-2 Selection for multiple mutations on 5FOA 140



ix

List of tables

Chapter 2

2-1 Per-genome per-generation mutation rates for ten clones of GIL104 35

2-2 Fitting data to a two-parameter model of post-plating growth 36

Chapter 3

3-1 Primers used in Chapter 3 41

3-2 Multiple mutation events 48

Chapter 4

4-1 Primers used in Chapter 4 67

4-2 Strains used for URA3 integration 69

4-3 Autonomously replicating sequences on Chromosome VI 85

Chapter 5

5-1 Strains used in Chapter 5 99

5-2 Mutational spectra 106

Appendix A

A-1 Variability in mutation rate estimates from fluctuation assays 132

A-2 Mutations in the yeast deletion collection 136

A-3 Decreased cold tolerance in msh2Δ strains 142



x

Acknowledgements

Despite my frequent use of the word “I,” the work described in this thesis is far

from an individual effort—I received help and support from numerous people, both

inside and outside of the lab.  Most notably, my thesis advisor Andrew Murray made

many intellectual contributions and provided a great deal of support throughout my stay

in his laboratory.  In many ways Andrew was the ideal advisor:  he afforded me the

freedom to work on several projects that lie outside of the main focus of his lab, he was

readily accessible, and he provided me with helpful feedback throughout this process.

One of Andrew’s best attributes is his ability to recruit excellent graduate students

and post-docs to his lab who not only bring expertise in many fields, but also have made

working here very enjoyable.  Over my years, I have overlapped with a number of

individuals:  Jun-Yi, Dawn, Soni, Chin-Lin, Erik, Grzegorz, John, Kevin, Matthieu,

Scott, Thomas, Ayellet, Derek, Joana, Larry, Michael, Nate, Nick, Nilay, Vahan, Will,

Anu, Beverly, Juliet, and Linda, all of whom have helped me in one way or another.

I would like to thank Erin O’Shea, Dan Hartl, Matt Michael, and Roy Kishony

(my thesis committee) for providing their thoughts on my project and for suggesting a



xi

number of experiments.  In addition, I benefited greatly from discussions with individuals

outside of Harvard, in particular, Tom Petes, Graham Walker, and members of the

Walker Lab.

My classmates and friends have played an integral part in my graduate

experience—I feel that I have learned as much outside of the lab as I did at the bench.

Importantly, our time away from the lab made life in Boston enjoyable; I am thankful to

have been brought in with such a great group.

I would not be the person I am if not for my family: my parents John and Lois and

my wife, Suzanne.  My parents have supported me in everything and Suzanne was

willing to uproot and move up here to Boston.  This thesis means as much to them as it

does to me.  Since I am the only scientist, my family doesn’t understand exactly what it is

that I do; however, they are always cheering for me, and that is all that matters.



xii

For my parents, John and Lois,

and my wife, Suzanne.



xiii

Preface

It was not my intention to devote my graduate career to studying mutation rate.  I

often claim—although others may not agree—that I was the first graduate student to join

this lab with the explicit intention of studying experimental evolution.  My initial

motivation in learning the fluctuation assay was to determine if a fraction of mutations

occur at a constant rate per unit time, and if so, to determine if this is sufficient to explain

the observation that the per-genome mutation rate increases under nutritional stress.  It

took several years before I was sufficiently comfortable with the assay to feel confident

in my estimates of mutation rate.  Two things occurred during this time:  I became

interested in improving the fluctuation assay itself and I made several observations

regarding mutation rate variation that were worth pursuing—that pursuit is described

here.  As is always true with any research project, I could not follow up on all of my

observations, and it is my hope that this thesis is sufficiently clear and well organized

such that others may bring these projects to fruition.

In many ways this thesis is presented in reverse-chronological order.  My earliest

experiments, examining mutation rate variation with respect to growth rate, environment,
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and strain background, are described in Chapter 5.  The examination of mutation rate

variation across yeast Chromosome VI, the observation that mutation rate is correlated

with replication timing, and a proposed mechanism for this relationship occupy Chapter

4.  My most recent work:  generating accurate estimates of the per-base-pair mutation

rate in yeast, along with a description of the improvements I have made to the fluctuation

assay, is presented in Chapters 2 and 3.  The bookends, Chapter 1 and Chapter 6, provide

examples of the importance of mutation rate variation, place this work in the context of

those studies, and highlight the important unanswered questions.

I expect to publish two papers from this thesis.  Chapters 2 and 3 have been

submitted to Genetics with the title “Estimating the per-base-pair mutation rate in the

yeast, Saccharomyces cerevisiae.”  Chapter 4 is in preparation and will be submitted

shortly.  Chapter 1 was written with the intent that it can serve as the basis of a review

article, should I choose to write one.  In addition, I hope that the observations and

discussions in Chapter 6 and Appendix A will one day serve as the basis for publications

by other authors.
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Abstract

The vast majority of mutations are deleterious.  Therefore, there is selection

pressure to keep mutation rates low.  Two arguments have been used to explain why

mutation rate is not zero:  there is a cost associated with ensuring fidelity and some

mutation is necessary to generation variation so that a species can adapt to changing

environments.  There exists a large amount of variation in mutation rate, which plays a

role in evolution, in cancer progression, in the ability of the immune system to function,

and in the ability of pathogenic bacteria to evade the immune system.  In this chapter, I

review the forces acting on mutation rate, the degree to which mutation rate varies, and

the biological significance of this variation.

1.1   The importance of mutation rate

Determining the optimal mutation rate:  Early observations regarding

spontaneous mutation showed that the vast majority of mutations are deleterious, raising

the question of why the mutation rate does not evolve to zero [127].  There are two

possible explanations.  The cost associated with increasing fidelity may prevent mutation

rate from being lowered [13, 55].  Alternatively the existence of beneficial mutations may

be responsible for setting the lower bound on mutation rate [65].  Theory predicts that for

an asexual population periodically exposed to new environments where beneficial

mutations exist, the optimal mutation rate will be proportional to the frequency with

which new environments are encountered [92].  However, there are several difficulties

with the hypothesis that mutation rate reflects a balance between the effects of deleterious

and beneficial mutations [121].  If the time between environmental shifts is long, during
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the intervening period selection will lower mutation rate below the optimal level [97].  It

has been shown experimentally that continued exposure to environments where beneficial

mutations exist selects for mutation rates orders of magnitude higher than the wild-type

mutation rate [95, 122].  Therefore, a population in a changing environment may

overshoot the long-term optimal mutation rate during periods of selection.  A third

difficulty is that the effect of beneficial mutations on mutation rate is limited in sexual

populations, since alleles modifying the mutation rate are unlinked from the mutations

they generate [65].  Therefore, any genetic exchange will limit the effect that beneficial

mutations will have on setting the optimal mutation rate.  Given these concerns, it is more

likely that mutation rate reflects a balance between the fitness cost associated with the

accumulation of deleterious mutations and the physiological cost of maintaining fidelity.

However, there is little experimental evidence showing that lowering mutation rate

imposes a fitness cost [121].  Strains with a lower mutation rate are difficult to isolate;

those that have been studied have a lower mutation rate not because of increased fidelity,

but due to the loss of the ability to tolerate DNA lesions, which would otherwise be

converted into mutations [106].

It is thought that the selective pressures responsible for tuning mutation rates act

on the per-genome mutation rate (rather than the per-base-pair mutation rate) and that

most DNA-based organisms have settled on a similar per-genome mutation rate, implying

that all organisms are under the same selective pressures [23].  These conclusions are

based on the observation, that for DNA-based organisms, the per-base-pair mutation rate

varies by four orders of magnitude, whereas the per-genome mutation rate is roughly
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constant [23].  This observation breaks down in higher eukaryotes, where the per-base

pair mutation appears to reach a minimum of 10-10 per base pair per generation [22].

Selection for elevated mutation rates:  Since the vast majority of mutations are

deleterious, theory predicts that for a population well adapted to its environment,

selection will lower mutation rate to the point at which the benefit does not outweigh the

cost associated with increased fidelity.  However, in many regimes in which beneficial

mutations exist, mutation rate sets the rate of adaptation and higher mutation rates will be

favored.  Despite the deleterious effect of mutation, strains with an elevated mutation rate

exist in natural populations at frequencies higher than predicted by mutation/selection

balance [5, 64, 79].  Many laboratory competition experiments using microorganisms

such as Escherichia coli and Saccharomyces cerevisiae, show that strains with an

elevated mutation rate (mutators) can out-compete strains with a wild-type mutation rate

(non-mutators) [9, 62, 131].  A typical competition experiment involves mixing mutators

and non-mutators in a fixed ratio and monitoring their relative frequencies over many

generations.  This requires that the strains be differentially labeled using auxotrophic

markers, drug markers, or fluorescent reporters, each of which may carry a fitness cost

which must be taken into account when interpreting results from these experiments.

Competitions are typically performed under conditions that laboratory strains are not

frequently exposed to, such as low glucose, a condition where mutators have a high

probability of fixing in a population that starts as a 1:1 mixture of mutators to non-

mutators.  Several lines of evidence show that the advantage of the mutator strains is not

due to the mutator allele itself, but is an indirect advantage resulting from the ability of

the mutator strain to produce beneficial mutations at a higher rate than non-mutators and
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hitchhike to fixation with these mutations [9, 117, 121].  The dynamics of competition

experiments show that at early times the mutators have either no fitness advantage or a

slight disadvantage, presumably due to the accumulation of deleterious mutations [9].  In

addition, mutators do not increase in frequency until after a lag period corresponding to

the waiting time for the first beneficial mutation.  Consistent with this, the lag time is

dependent upon the strength of the mutator allele:  the higher the elevation of mutation

rate, the shorter the lag time [9].  Mutator strains, which arise and fix in long-term

evolution experiments, can be transfected with the wild-type allele without diminishing

the fitness of the strain [117].

The probability that mutators will win a competition is frequency dependent, in

that the fraction of mutators in a population will increase when mutators are frequent and

decrease when mutators are rare [9].  This is because, as stated above, the advantage of

mutator strains is that they are able to generate beneficial mutations more rapidly than

non-mutators.  However, when mutators are exceedingly rare it becomes more likely that

the next beneficial mutation will occur in the non-mutator subpopulation.  Therefore,

there exists a critical frequency of initial mutators in a population above which the

mutators will win the majority of the competitions and below which the non-mutators

will win.  This critical frequency depends upon the initial population size [62].  In one

experiment it was found that at an initial wild-type population size of 105, the critical

frequency of mutS- mutators needed to win the competition is 1 in 100; whereas, if the

initial population size is 107, the critical mutator frequency is reduced to 1 in 105 [62].

This result has been interpreted to mean that the probability of mutators winning is

frequency-independent and depends only upon the existence of at lease one mutator
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bacterium containing a beneficial mutation prior to the start of the competition [62].

However another explanation is that mutators are not only competing against the non-

mutator subpopulation but also against the accrual of deleterious mutations.  Therefore, in

order for a mutator to win the competition, the mutator population must generate a

beneficial mutation before the non-mutator population and before the accrual of

deleterious mutations eliminates the mutator population.

The discussion thus far has assumed that a competition is decided by which

population acquires the first beneficial mutation.  This may be true for small population

sizes with a low beneficial mutation rate; however, in most situations, multiple beneficial

mutations will occur on top of one another [17].  In this situation the winner of the

competition is determined by the rate at which the most-fit clone in each subpopulation

increases its fitness.  The outcome of these competitions is difficult to evaluate

analytically and may require numerical simulation.

Mutators have been shown to arise and fix during evolution experiments with E.

coli in glucose-limited media [69, 94, 95, 122] and in the mouse gut [39].  In one

experiment, twelve lines of E. coli were established and transferred daily to fresh media

[68].  After 20,000 generations, four out of twelve lines were fixed for mutators [69,

122].  Analysis of this experiment shows that, consistent with the competition

experiments, the benefit of the mutator strain is independent of the mutator allele itself;

therefore, the mutator strain hitchhiked to fixation.  In two of the three lines the fitness of

the population increased during the time where the mutator strain was sweeping the

population.  The rate at which the mutator strain sweeps through the population is an

indication of the fitness of the beneficial mutation it acquired relative to the population
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average.  During competition experiments with small population sizes and low mutation

rates, this is approximately equal to the effect of a beneficial mutation on the ancestral

background, since the mutation responsible for the increase of the mutator subpopulation

is likely to be the first beneficial to have occurred and is likely to have occurred in a

background with a minimal deleterious load.  However, during the long-term evolution

experiment the rate at which the mutator allele increased in frequency is slower than

would be predicted based upon the fitness of the clone [117].  This slowing of the

mutator sweep is due to clonal interference, the presence of multiple beneficial mutations

increasing in frequency concurrently, which increases the average population fitness and

slows the rate at which the highest fitness clone overtakes the population [37].  Clonal

interference can diminish the advantage of elevated mutation rates in large asexual

populations [12, 17, 37, 138].

The existence of mutator alleles at low frequencies in populations is thought to

increase the rate of adaptation [129].  When beneficial mutations are plentiful, high

mutation rates will be favored and low frequency mutator alleles will rise to fixation in

the population by hitchhiking with beneficial mutations.  However, when a population is

well adapted to its environment and beneficial mutations are rare, selection favors a lower

mutation rate and the frequency of mutators should decline, since the cost of deleterious

mutations favors reversion of mutator to non-mutator strains [129].  Indeed, many

commensal and pathogenic strains are commonly found to possess an elevated mutation

rate [43, 64, 79].  Screening of the Food and Drug Administration’s bacterial pathogen

collection and reference collections of natural isolates of E. coli and Salmonella enterica

for strains with elevated mutation rates shows that over 1% of pathogenic E. coli and S.
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enterica strains show mutator phenotypes due to the loss of mismatch repair [64].  Many

studies have detected high frequencies of mutator alleles in clinical isolates such as

uropathogenic E. coli [14] and Pseudomonas aeruginosa isolates from the lungs of Cystic

Fibrosis patients [96].  There are several explanations for the existence of mutator alleles

in pathogenic strains.  One possibility is that since pathogenic strains derive nutrients

from the host, many mutations, which would otherwise be deleterious, are selectively

neutral; therefore, pathogenic strains are not under the same selective pressure to

minimize mutation rate and mutators may become enriched through drift [128].  Higher

mutation rates may also be favored as a consequence of antibiotic selection.  Multiple

rounds of antibiotic selection will increase the fraction of mutators in a population [78].

However, antibiotic resistance in pathogenic strains is usually conferred by the

acquisition of multi-drug resistance plasmids rather than point mutation [135].  An

additional possibility is that higher rates of mutation allow for loss of many nonessential

proteins that could otherwise be targeted by the host immune system [128].

In addition to the role of mutators in pathogenic bacteria, an elevated mutation

rate is also a hallmark of cancer progression.  Cancer cells are associated with many

forms of genetic instability including aneuploidy, chromosomal instability, microsatellite

instability, and an abundance of point mutations [72].  These observations led to the

suggestion that an cancer cells must have acquired mutations in genes involved in

maintaining genomic fidelity and that this may be a necessary event for the development

of cancer [71, 73].  In addition, the observation that the basal mutation rate is insufficient

to account for the number of mutations necessary in the evolution of cancer suggests that

acquiring an elevated mutation rate may be an early event in the evolution of cancer
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rather than an outcome of cancer progression [72].  This hypothesis is supported by the

observation of microsatellite instability in the early stages of cancer progression [48, 118]

and the association of mutations in mismatch repair genes with a hereditary form of colon

cancer [6, 26, 63, 99].

1.2   Examples of mutation rate variation

Genetic variation:  Because of the role of mutator strains in evolution,

pathogenesis, and cancer, and the usefulness of mutator strains in studying the

mechanism of DNA repair pathways, a large amount of research has focused on genetic

variation of mutation rate, including several screens to identify mutator alleles [31, 83].

Over 30 mutator loci have been identified in E. coli [47].  A screen of the yeast deletion

collection for strains with elevated mutation rates identified over 30 mutator alleles

including most of the known mutator alleles and fourteen previously uncharacterized

mutator alleles [49].  Mutator alleles have been found to be involved in many cellular

functions such as mismatch repair, base-excision repair, nucleotide-excision repair, DNA

replication, recombinational repair, cell-cycle checkpoints, and oxidative stress response

[31].  Mutator alleles preferentially increase particular types of mutational events and

range in strength up to 100-fold yeast and 1000-fold in E. coli [47, 49, 83].

Many of the mutator strains found in nature and during experimental evolution

result from loss of mismatch repair.  The role of mismatch repair is to correct errors made

during replication, primarily one or two base-pair frameshift mutations and missense

mutations [31, 60, 87].  In bacteria, thirteen proteins are necessary for mismatch repair,

most of which play roles in other repair pathways [60].  The three core proteins of
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mismatch repair are MutS, MutL, and MutH.  MutS functions as a homodimer and is

responsible for recognizing and binding to mismatched bases.  MutL coordinates

association of MutS with and other components of the repair machinery.  MutH

discriminates the old strand from the new and preferentially nicks the new strand so that

the inappropriate nucleotides can be removed.  In eukaryotes the MutS function is carried

out by two heterodimeric complexes of MutS Homolog proteins (MSH2/3 and MSH2/6).

Similarly, the MutL function is carried out by two heterodimeric complexes of MutL

Homolog proteins and PMS2 (MLH1/PMS2, MLH1/2, and MLH1/3).  Eukaryotes do not

possess a MutH homolog; instead, the MLH proteins may carry out the functions of

MutH [52].

Three of the four bacterial lines that evolved elevated mutation rates during a

long-term evolution experiment contain mutations in components of mismatch repair:

two mutL- mutators and one mutS- mutator [122].  Mutations in the human homologs of

these genes hMSH2 [26, 63] and hMLH1 [6, 99] are associated with hereditary

nonpolyposis colon cancer (HNPCC).  Studies of natural populations show that mismatch

repair mutators are commonly found in commensal and pathogenic strains [64, 79, 96].

Why mismatch repair mutators are frequently selected is an area of increasing interest; it

is possible that loss of mismatch repair confers additional benefits, that the loss of other

pathways imposes a fitness cost, or they are frequently selected since they are among the

strongest identified mutators.

Variation within the genome:  In addition to genetic variation, mutation rate

varies within the genome.  Inverted repeats in the promoter of Salmonella flagellar

synthesis genes can undergo frequent recombination events [120].  Microsatellite
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sequences and polynucleotide runs are prone to frameshift mutations, even in cells

proficient for mismatch repair.  Bacteria have found a way to make use of this increased

rate of mutation by placing these hypermutable sequences in the regulatory or coding

regions of genes where phenotypic variation is beneficial [2].  Loci containing of these

sequences are known as contingency loci and the process of using these sequences to

create variation is known as phase variation [89].  Screening of whole genome sequences

of the human pathogens, Haemophilus influenzae [133], Neisseria meningitidis [113],

and Campylobacter jejuni [101] have identified over 50 loci subject to phase variation.

These contingency loci are typically involved in the biosynthesis of cell surface

components, such as lipopolysaccharides, adhesions, and capsular proteins.  Phase

variation may be responsible for the rapid generation of antigenic variation of pathogenic

strains following a population bottleneck [2].

Employing hypermutable sequences to generate phenotypic variation is not

limited to prokaryotes.  A screen of the yeast genome identified 44 loci containing

tandemly repeated intergenic sequences, the majority of which show length variation

between different strains [134].  Most of the tandem repeats are found in genes encoding

cell wall proteins or proteins involved in cell wall synthesis and maintenance [134].

Interestingly, the number of tandem repeats correlates with phenotype:  increasing the

number of repeats in the cell surface adhesion gene, FLO1, increases the strength of

adhesion [134].  A similar observation has been made in dogs; namely, the number of

tandem repeats in developmental genes correlates with physical features such as snout

length [27].  The overrepresentation of triplet repeats in developmental genes could

explain the rapid morphological changes seen in domesticated dogs [27, 103].
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In order to recognize a vast array of antigens, cells of the immune system must be

able to generate a large amount of sequence diversity within the variable region of

antibodies.  It is estimated that humans generate 109 unique antibodies [18].  The immune

cells use a two-step process for generating this diversity.  First the antigen-contacting

region is assembled in a combinatorial fashion by recombination between variable (V),

diversity (D), and joining (J) segments through non-homologous end joining known as

V(D)J recombination [114].  The amount of variation created by this process is small

compared to the diversity seen in antibodies.  The majority of the diversity is generated

by somatic hypermutation, a process by which the immune cell targets the variable region

for mutagenesis [18].  The first step in somatic hypermutation is the targeting activation-

induced deaminase (AID) to the variable region.  AID is B-cell specific cytosine

deaminase that acts on DNA to produce deoxyuridine [91].  Targeted deoxycytidine

deamination can produce mutations through multiple pathways [18].  Replication across

deoxyuridine results in a transitions from G:C to A:T base pairs.  Recognition of the

inappropriate G:U base pair by mismatch repair can result in mutations at adjacent sites.

In addition, uracil-DNA glycosylase may excise the uracil base leaving an abasic site.

Abasic sites can result in mutagenesis by either initiating non-homologous end joining or

translesion synthesis [18].

Both of the mechanisms described above, phase variation in pathogenic bacteria

and somatic hypermutation in the immune system, allow cells to generate variation

specifically in regions where it is needed; and, unlike mutator alleles, avoid the cost of

globally elevating the mutation rate.  There are other forms of mutation rate variation

within the genome that do not have an obvious selective benefit; rather, may simply be a
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consequence of genome structure.  The yeast genome contains eight nearly identical

tRNA-Tyr loci any one of which can be mutated to an ochre-suppressor tRNA; and it was

noticed that there is a large difference in the frequency with which each of the eight

tRNAs acquire the suppressor mutation [50].  Although the mechanism for variation in

mutation rate across the genome is not know for the case of the tRNA-Tyr ochre

suppressor mutation, it has been observed that the ability of repair proteins to access the

DNA can lead to variation in mutation rate across the genome.  Incorporating a

microsatellite sequence in frame with the URA3 reporter at various locations in the yeast

genome, reveals that the rate of microsatellite frameshift mutation varies 16-fold over ten

different locations in the genome [46].  Repeating this experiment in a mismatch repair-

deficient strain dramatically reduces this variation, suggesting that the majority of the

variation in frameshift mutation rates results from variation in the ability of mismatch

repair proteins to access the DNA and not from the variation in the polymerase-error rate

[46].  In addition to variation in the ability to repair frameshift mutations across the

genome, mismatch repair is more efficient in correcting errors on the lagging rather than

the leading strand during replication in yeast [102].  The difference is attributed to the

model of mismatch repair strand discrimination in eukaryotes, where nicks generated

during replication are used to identify the nascent strand.  Due to the asymmetry of

replication, nicks are more frequent on the lagging strand; therefore, misincorporated

bases on this strand can be more easily excised.

Environmental variation:  In addition to mutation rate variation within the

genome, mutation rate can vary with the environment.  There are two ways the

environment can influence mutation rate.  The environment can be directly mutagenic; or
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the environment may cause a cell to enter a compromised state in which mutations occur

at a higher frequency.  The former would include all environmental mutagens including

ionizing radiation, UV radiation, alkylating agents such as methyl chloride and ethyl

methanesulfonate, crosslinking agents such as nitrogen mustard and cisplatin, and

intercalating agents such as psoralens and aflatoxins [31].

An example of an environment that causes an elevation of mutation rate without

directly damaging DNA is high cadmium concentrations [51].  Cadmium has been shown

to increase mutation rate by inhibiting mismatch repair; and, exposure of yeast cells to

micromolar concentrations of cadmium increases mutation rate to levels 50% of that seen

in mismatch repair deficient cells [51].  The ability of cadmium to inhibit mismatch

repair provides a possible mechanism to explain cadmium toxicity [80].

Another example of an environmental effect on mutation rate is the observation of

an elevated mutation rate in non-growing (or slowly-growing) stationary-phase cells

[110].  The classic Luria-Delbrück experiment shows that mutations in E. coli conferring

resistance to T1 bacteriophage occur prior to exposure to the phage [75].  It has been

pointed out that such a strong selection can only detect mutations that occur prior to

plating since sensitive cells are killed once the phage has been encountered; therefore,

this experiment leaves open the possibility that additional mutations can occur after

exposure to selection [8].  Using nutritional reporters in both bacteria [8, 41, 115] and

yeast [42, 123], several experiments report that mutations continue to occur in apparently

non-dividing cells after exposure to selection, and these mutations occur preferentially at

the locus under selection.  This idea that mutations are targeted specifically to regions

where they are likely to confer a selective advantage is known as directed mutagenesis.
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The suggestion that mutations occur more frequently when beneficial than when neutral

is in conflict with the Darwinian assumption that the rate at which variation is generated

is independent of any selective benefit that it may provide.  Several alternative

explanations were proposed to explain this observation, such as selection against

mutations prior to plating and additional post-plating cell divisions due to the selection

for an intermediate genotype [66, 67, 85].  Currently, directed mutation has little support

and this phenomenon is now referred to as adaptive mutation in order to distinguish it

from directed mutation [28].  Adaptive mutation states that the global mutation rate is

elevated in stationary phase (non-dividing) cells [29, 108], and that this may be a general

stress response [108]; although the subject remains controversial [109].  A survey of

natural populations found variation in the degree to which strains undergo stationary

phase mutation, in that strains with a high mutation rate during exponential growth show

less stationary phase mutation than strains with a low mutation rate during exponential

growth [4].

Variation inferred from sequence data:  Due to the wealth of genomic data

available several inferences have been made regarding variation in mutation rate across

the genome.  These experiments utilize sequence data to characterize the distribution of

neutral substitutions between sequence alignments; such as substitutions at synonymous

sites, intergenic sequences, introns, and repetitive elements [25].  Two confounding

factors in these analyses are that the mutations themselves may not be selectively neutral

and that changes to genome structure during evolution may alter the patterns of

substitution.  Despite the caveats, these analyses have revealed mutation rate variation on

many length scales from individual bases to entire chromosomes [25].  At the smallest
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level are sequence context effects, where mutation rate varies depending upon the

identity of the flanking bases [57] and on length scales less than ten base-pairs [119].

Mutation rate variation is also identified on the kilobase to megabase length scale in the

mammalian genome [119].  Comparison of substitutions in repetitive elements supports

the existence of mutation rate variation on the megabase length scale in the mammalian

genome and suggests that little variation exists on length scales less than 100 kilobases

[33].  This variation has potential biological importance in that regions of high neutral

substitution rates are enriched for genes involved in extracellular communication,

whereas housekeeping genes tend to be found in regions of low substitution rates [11].

Interestingly, similar analyses have failed to find evidence for mutation rate variation in

the yeast genome [10].

In addition to variation along a chromosome, substitution rates also vary between

chromosomes [70].  In humans, the X chromosome shows a lower rate of synonymous

substitutions compared to the Y chromosome and the autosomes [70].  Several

explanations have been put forward to explain this phenomenon such as higher mutation

rates in males due to more germ-line division [86] or selection pressure for lower

mutation rate on the X chromosome due to exposure of deleterious mutation when

hemizygous in males [81].

1.3   Summary

Mutation rate is an important parameter in evolution.  It limits the speed of

adaptation in populations with beneficial mutations; in the absence of beneficial

mutations it sets the equilibrium fitness of the population.  Mutation rates vary between
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species, between individuals of the same species, within the genome, and between

environments.  This variation can have important biological consequences in setting the

rate of adaptation, in the struggle between pathogenic strains and the host immune

system, and in the evolution of cancer.  Despite its importance, the extent of mutation rate

variation is unknown and there are large uncertainties in estimates of the per-genome per-

generation mutation rate.  Using the budding yeast, Saccharomyces cerevisiae, I have

made improvements to the calculation of mutation rates and characterized mutation rate

variation.  Chapter 2 describes improvements I have made to the performance and

analysis of the fluctuation assay in order to generate accurate estimates of the phenotypic

mutation rate.  Conversion of phenotypic mutation rates into per-base-pair rates requires

an estimate of the target size for phenotypic mutation.  Chapter 3 outlines a probabilistic

definition for the effective target sizes of genes, which acknowledges that mutation rate

varies across the genome.  By sequencing over 200 loss-of-function mutations of ura3

and can1, I calculate the effective target sizes for these genes.  Chapters 4 and 5 use the

improvements to the fluctuation assay described in Chapter 2 to investigate mutation rate

variation.  The basis for Chapter 4 is an experiment in which 43 strains were generated

where the URA3 reporter was integrated at a different location in each strain,

approximately every 3.8 kilobases along Chromosome VI.  The results from this

experiment show that (1) the mutation rate varies 6-fold across this chromosome, (2)

mutation rate is clustered such that Chromosome VI is divided into three regions of

length 50 to 100 kilobases of relatively uniform mutation rate, and (3) mutation rate is

correlated with replication timing.  The correlation between replication timing and

mutation rate is discussed with reference to a new model regarding the temporal
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segregation of two modes of DNA damage tolerance during replication:  error-free DNA

damage tolerance and translesion synthesis.  In addition to mutation rate variation across

the genome, I have investigated variation between strain backgrounds, variation between

environments, and variation with the duration of the cell cycle.  These experiments are

described in Chapter 5.  Chapter 6 summarizes my work and puts it in the context of the

work described above.  In addition, I lay out what I believe are the important unanswered

questions regarding mutation rates, how my data have bearing on these questions, and

where possible, I provide experiments aimed at addressing these questions.
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Abstract

Mutation rate is an important parameter in evolution.  It limits the speed of

adaptation in populations with beneficial mutations; in the absence of beneficial

mutations it sets the equilibrium fitness of the population.  Despite its importance, there

are large uncertainties in estimates of the per-genome per-generation mutation rate.

Estimating this parameter is typically a three-step process:  determining the mutation rate

to a particular phenotype, converting this phenotypic rate into a per-base-pair mutation

rate in a particular gene and extrapolating this local rate to the entire genome.  In this

chapter, I focus on the technical challenge of accurately determining phenotypic mutation

rates.  I have improved the execution and analysis of the fluctuation assay and have

developed methods for asking whether observed data is derived from a Luria-Delbrück

distribution.  I find that the phenotypic mutation rates to 5FOA, canavanine, and α-factor

resistance to be 5.43 x 10-8, 1.52 x 10-7, and 3.07 x 10-6 per genome per generation.

2.1   Materials and methods

Strains and media:  GIL104 is a haploid yeast strain derived from the W303

background with genotype URA3, leu2, trp1, CAN1, ade2, his3, bar1Δ::ADE2, MATa.

Yeast were grown in either complete synthetic media (SC), complete synthetic media

without uracil (SC-Ura), or complete synthetic media with only 1% glucose (SCLG).

Fluctuation assays were plated onto four types of selective media: 1 x canavanine

(complete synthetic media without arginine [SC-Arg], 60 mg/L l-canavanine, Sigma-

Aldrich, St. Louis, MO), 10 x canavanine (SC-Arg, 0.6 g/L l-canavanine), 5FOA (SC-

Ura, 1 g/L 5FOA, Sigma-Aldrich, St. Louis, MO), and α-factor (YPD [Yeast Extract,
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Peptone, Dextrose], 10 mg/L αF, Bio-Synthesis, Lewisville, TX).  5FOA is nontoxic, but

can be converted into toxic 5-fluoro-uracil by the uracil biosynthesis pathway.  The

product of the URA3 gene catalyzes a key step in this process; therefore, 5FOA

predominantly selects for ura3 loss-of-function mutants.  Canavanine is a toxic arginine

analog, whose uptake requires the arginine transporter.  Canavanine selects for loss-of-

function mutants of this transporter, which is encoded by the CAN1 gene.  α-factor is a

peptide pheromone secreted by mating-type α (MATα) cells.  Binding of the pheromone

to the Ste2 receptor on a MATa cell signals through a MAP-kinase cascade to initiate the

mating response genes and a G1-arrest [21].  Wild-type MATa cells secrete a protease,

Bar1, which degrades α-factor; deleting BAR1 prevents growth on media containing α-

factor and allows us to measure the rate of resistance to α-factor using the fluctuation

assay.  There are at least ten genes whose loss-of-function results in α-factor resistance;

therefore, the mutation rate to α-factor resistance is expected to be an order of magnitude

higher than the mutation rates to 5FOA and canavanine resistance.

Fluctuation assays: Fluctuation assays were performed on ten clones of GIL104

to determine the rate at which cells mutated to become resistant to 5FOA, 10 x

canavanine, or α-factor.  Media and culture volumes were chosen such that a similar

number of mutants would be counted for each phenotype: 200 µl of SC, 100 µl SC, and

10 µl of SCLG for resistance to 5FOA, 10 x canavanine, and α-factor, respectively.

To begin each fluctuation assay, a single clone was grown overnight to saturation

in SC-Ura, diluted 1:10,000 in into the appropriate media, and dispensed into 96-well

plates (Figure 2-1b).  This represents initial innocula of approximately 2000, 1000, and

200 cells for the cultures assayed for mutations to 5FOA, 10 x canavanine, and α-factor
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Figure 2-1.  The fluctuation assay.  During the growth of a culture the number of mutation events 
will follow the Poisson distribution; however, the number of mutants per culture will have a larger 
variance.  (A) Each of the three cultures had two mutation events occur during growth; however, 
the number of mutant cells varies depending upon when during growth the mutations arose.  (B) 
To perform the fluctuation assay, an overnight culture is diluted 1:10,000 and distributed into 96 
parallel cultures.  Each culture is plated on selective media to determine the distribution of the 
number of mutants per culture (the Luria-Delbrück distribution).  When a mutation event occurs 
early in the growth of a culture it leads to a jackpot (A, middle panel; B, the culture with 107 
mutants).

Generations
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resistance.  Cultures were grown for two days at 30° without shaking (only one day for

the low glucose cultures, which saturated after one days growth) and re-suspended using

a Titramax 1000 orbital shaker (Rose Scientific  Inc, Cincinnati, OH) prior to plating.

Twenty-four cultures were pooled, diluted, and counted in triplicate using a Beckman

Coulter particle counter (Beckman Coulter, Fullerton, CA) to determine the average

number of cells per culture.  The remaining 72 cultures were spot plated onto over-dried

plates to select for mutants: 200 µl cultures were spotted onto 12 5FOA plates (six

spots/plate, Figure 2-2); 100 µl cultures were spotted onto eight 10 x canavanine pates

(nine spots/plate, Figure 2-3); 10 µl cultures were brought up to 100 µl with sterile water

and spotted onto eight 10 x canavanine plates (nine spots/plate).  A Tecan Genesis liquid

handler (Tecan US, Durham, NC) was used to semi-automate spot plating.  In preparation

for spot plating, the plates were over-dried by pressing a Whatman filter paper (Grade 3,

90 mm) onto the plates using a replica plating block and allowing the filter to remain in

place for at least 30 min.  The filters remove approximately 1 mL of liquid and plates can

be used for several days after filters have been removed.

Plates were allowed to dry overnight at room temperature, then incubated at 30°

for one, two, or five days for αF, 10 x canavanine, and 5FOA, respectively, after which

time the number of mutants per spot was counted using a dissection microscope.  For 10

x canavanine and α-factor plates I used a size threshold: colonies smaller than 1 mm at

10 x magnification for canavanine or 3 mm at 6 x magnification for α-factor were

presumed to result from mutations that had occurred after the cells were plated and were

not counted. The choice of the size cutoff was based on looking for a natural break in the

colony size distribution.  However, the size distribution was not bimodal; therefore, it is



Figure 2-2.  Fluctuation assay on 5FOA.  72 200 L cultures were spot-plated onto 12 5FOA 
plates 5FOA plates.  Colonies were counted after five days of growth.



Figure 2-3.  Fluctuation assay on 10 x canavanine.  72 100 L cultures were spot-plated onto 
eight canavanine plates.  Colonies were counted after two days of growth.
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reasonable to assume that some leaky mutants were excluded.  This is clear when I

observe jackpots of mutants smaller than the size threshold, which were excluded from

the analysis.  For this reason, it is important that the strains I sequenced to determine

target size were selected off of the plates from the fluctuation assays so that any leaky

mutants, which were excluded from the determination of mutation rates, were also

excluded from the calculation of target size.  Fluctuation assays for resistance to 1 x

canavanine were performed similarly to those for 10 x canavanine except 1 x canavanine

plates were counted three days post plating.

Analysis of fluctuation data: Fluctuation data were analyzed by the Ma-Sandri-

Sarkar maximum likelihood method in which the data are fit to a model of the Luria-

Delbrück distribution based upon a single parameter m, the expected number of mutation

events per culture [112].  Mutation rate is calculated from the equation µ = m/N, where N

is the average number of cells per culture (approximately equal to the number of cell

divisions per culture since the initial inoculum is much smaller than N).  Ninety-five

percent confidence intervals on m and µ were assigned using equations 24 and 25 from

[107].

The data were also fit to a two-parameter model that accounts for post-plating

growth and mutation.  This model is a Luria-Delbrück distribution combined with a

Poisson distribution with a rate Nµd = md, where d is the mean number of cell divisions

(in which mutants could occur and be detected) in the lineage of cells that were plated on

the selective plates; d can be related to the number of generations of growth post plating

(g) by d = 2g - 1.  The probability distribution for the number of mutants per culture in the

two-parameter model is thus the joint distribution of the Luria-Delbrück (parameter m)



27

and the Poisson (parameter n  = md); the m’s are the same assuming that the mutation rate

is the same for the post-plating cell divisions.  Akaike’s information criterion was used to

determine which model best fits each fluctuation assay while using the fewest free

parameters.

Computational Analysis:  The Ma-Sandri-Sarkar maximum likelihood analysis

and the two-parameter fitting was performed in Matlab (The MathWorks, Natick, MA).

Fitting to the two-parameter model was achieved by optimizing m (with d fixed),

optimizing d (with m fixed) and repeating this process until convergence.  Akaike’s

information criterion (AIC) was used to determine which model best fits the data [1].

AIC is calculated as 2P – 2(lnL) where L likelihood of observing the data given the best-

fit parameters and P is the number of free parameters.  The model that provides the

lowest AIC score is the preferred model.  Matlab was also used to simulate fluctuation

data, calculate the sum-of-the-square differences between Luria-Delbrück distributions

and data.

2.2   Methods for measuring mutation rate

Three methods are commonly employed to measure phenotypic mutation rates:

mutation accumulation assays, mutant accumulation assays, and fluctuation assays.  The

mutation accumulation assay involves passing a culture through recurrent bottlenecks,

ideally of a single cell/individual, such that all mutations are nearly neutral. This is useful

for determining the rate of mutations effecting fitness since repeated bottlenecks will

reduce the effect of selection [54, 142].  This method works well in multicellular

organisms, where the population size can be maintained at the bottleneck; however, in
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microorganisms, where a visible colony must be allowed to form, selection will still

occur between the bottlenecks.  Several methods are available for estimating phenotypic

mutation rates from mutation accumulation assays [34]; alternatively, direct sequencing

can be used since all mutations occur in the same genome [16, 40].

In the mutant accumulation assay, the frequency of a neutral phenotype is

monitored in an exponentially growing culture by periodically plating an aliquot of the

culture onto selective media.  Once the population reaches a size such that the probability

of a new mutation occurring in the next generation is approximately one, the frequency of

mutants will increase linearly with time.  An accurate estimate of phenotypic mutation

rate requires a long period of time between frequency measurements, making these

experiments vulnerable to beneficial mutations, which are more likely to occur in the

non-mutant population and slow the accumulation of mutants.

In the fluctuation assay, many parallel cultures are inoculated with a small

number of cells, grown under non-selective conditions, and plated to select for mutants

[75].  The number of mutations that arise in each culture will follow the Poisson

distribution; however, the number of mutant cells per culture will vary greatly since early

mutations will lead to “jackpots,” cultures that contain a great many mutant individuals.

The simplest way to estimate the expected number of mutations that occur in each

culture (m) is from the fraction of cultures with zero mutants, which should be equal to

e-m.  Luria and Delbrück used this method (the P0 method) in the original paper describing

the fluctuation assay [75].  The full distribution of mutants per culture (the Luria-

Delbrück distribution) can be described by a set of recursive equations [76].  The most

accurate method for estimating m (Ma-Sandri-Sarkar maximum likelihood) finds the m
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that gives the best fit of the Luria-Delbrück distribution to the data [107, 112].  By

simulation, Stewart calculates 95% confidence intervals for m obtained using this method

[125]; however, for the confidence intervals to be meaningful, the data must follow the

Luria-Delbrück distribution.

One way to estimate the quality of data is to plot the cumulative distribution of

mutant frequencies on a log-log plot; Luria-Delbrück-distributed data presented in this

way will produce a straight line with slope –1 [107].  Deviations from linearity show that

the data do not approximate a Luria-Delbrück distribution.  This graphical approach

ignores jackpots (since they lie far off the line) and cultures with zero mutants (due to the

log transformation).

2.3   Fluctuation assays

The accuracy of mutation rate estimates from fluctuation assays depends on how

the experiment is performed and how the data are analyzed.  I have made improvements

to both and will consider with each in turn.

Performing fluctuation assays:  One way to increase the accuracy of mutation

rate estimates from fluctuation assays is to increase the number of cultures [125].

Typically fluctuation assays are performed in test tubes; however, in order to increase the

throughput, I perform the assays in 96-well plates.  I plate 72 of the cultures to selective

media to determine the number of mutants per culture; the remaining 24 are used to

determine the average number of cells per culture (see Methods).  Using the 96-well

format I can vary the culture volume from 10 to 200 µl and can measure mutation rates

over two orders of magnitude (Table 2-2).
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Rather than spreading cultures onto selective media, I spot cultures onto over-

dried plates, where they spread uniformly over an area of 1.3 to 3 cm2, depending on the

volume spotted.  This increases efficiency and reduces the number of plates since up to

nine cultures can be spotted onto one plate.

The combination of spot plating and the 96-well format allow for automation of

the fluctuation assay.  To demonstrate this, I semi-automated the process using a liquid

handler; this enabled me to perform all fluctuation assays described here—the equivalent

of three 720-tube fluctuation assays—in parallel.

Analyzing fluctuation data 1:  Post-plating growth on 1 x canavanine: There are

many methods for calculating mutation rates from fluctuation data [30] of which the Ma-

Sandri-Sarkar maximum likelihood method is preferred because it is the most accurate, it

is valid for any range of the expected number of mutation events per culture (m), and

95% confidence intervals can be calculated by an empirically determined set of equations

[107, 125].  In order for estimates of mutation rates and 95% confidence intervals

generated from this method to be accurate the data must approximate the Luria-Delbrück

distribution.

I tested this approximation by using the Ma-Sandri-Sarkar maximum likelihood

method to estimate m and then plotting the predicted cumulative frequency distribution of

mutants against the experimental data.  Fluctuation assays on 5FOA produced close

agreement between predicted and observed distributions (Figure 2-4).  In contrast, assays

on 1 x canavanine and αF produced data that deviates significantly from the Luria-

Delbrück distribution.  Compared to the expected distribution, cultures with a small

number of mutants are underrepresented and cultures with many mutants are
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Figure 2-4.  Fitting data from fluctuation assays.  Four 72-tube fluctuation assays using GIL104 
Clone A plated were plated onto 1 x canavanine, 5FOA, 10 x canavanine, and -factor.  Black 
circles show the cumulative distribution of the data.  Solid curves indicate the cumulative Luria-
Delbrück (one-parameter model) distributions fit to the data with parameter m = 4.80, 1.31, 2.82, 
and 1.97 for 1 x canavanine, 5FOA, 10 x canavanine, and -factor, respectively.  The broad 
shaded curve is the two-parameter model of post-plating growth fit to the data with m = 2.31, d = 
2.62; m = 2.39, d = 0.37; and m = 1.10 and d = 1.42 for 1 x canavanine, 10 x canavanine, and 

-factor, respectively.  The one-parameter and two-parameter models are the same for 5FOA.  
Using Akaike’s information criterion (Akaike 1974), the 5FOA and 10 x canavanine fluctuation 
assays are best described by the one-parameter model; whereas, the 1 x canavanine and 

-factor fluctuation assays are best described by the two-parameter model.
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overrepresented in the 1 x canavanine experiment (Figure 2-4, one-parameter model).

This deviation can be explained as the combination of a Luria-Delbrück distribution and

a Poisson distribution.

One possible explanation is that canavanine-sensitive cells can divide and give

rise to canavanine-resistant mutations after they have been plated; the number of

additional mutant colonies will follow the Poisson distribution.  I fit the distribution of

mutant frequencies to a two-parameter model that incorporating post-plating growth and

mutation.  This model is the joint distribution of a Luria-Delbrück distribution (with

parameter m) and a Poisson distribution (with parameter n  = md).  The data from 1 x

canavanine fit better to the two-parameter model (Figure 2-4).

I quantified the improvement of the fit by calculating the sum-of-the-squared

differences between the cumulative distribution of the data and the theoretical curve for

both models.  I define the improvement of fit as the decrease in the sum-of-the-square

differences between the one-parameter and the two-parameter models.  The two-

parameter model will always fit the data as well or better than the one-parameter model;

therefore, Akaike’s information criterion (AIC) was used to determine whether the

increase in fit justifies the additional parameter.

For fluctuation assays on 1 x canavanine, the sum-of-the-square differences for

the one-parameter model and the two-parameter model are 1.27 and 0.13, giving an

improvement of 1.14.  By AIC, the data is best fit by the two-parameter model.  For

fluctuation assays on 5FOA, there is no improvement of fit using the two-parameter

model.  To minimize post-plating mutation I increased the canavanine concentration 10-

fold and counted the plates one day earlier.  Although the two-parameter model still gives
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a slightly better fit (Figure 2-4, improvement of fit 0.09), according to AIC, the data are

best fit by the one-parameter model.  For the fluctuation assay on αF, the data are best fit

by the two-parameter model with an improvement of fit of 0.26; however, both models

fail to capture all features of this distribution (Figure 2-4).

Analyzing fluctuation data 2:  Quality of data:  The Ma-Sandri-Sarkar maximum

likelihood method is the most accurate method for estimating the expected number of

mutants per culture (m) from fluctuation data; however, this method assumes that the data

follow the Luria-Delbrück distribution.  I have shown that post-plating proliferation and

mutation of canavanine-sensitive cells on 1 x canavanine plates can be detected since it

produces a deviation from the expected Luria-Delbrück distribution.  If the data are not

corrected, this leads to an overestimation of the mutation rate.  One can correct for this by

fitting the data to a two-parameter model that accounts for post-plating growth or largely

eliminate it by increasing the concentration of canavanine.  Other processes that

introduce error into mutation rate estimates such as differential growth rates between

mutants and non-mutants [143] and poor plating efficiency [124, 126] will also produce

deviations from the expected Luria-Delbrück distribution.  Therefore, I suggest that

fitting fluctuation data to the cumulative distribution and comparing the sum-of-the-

square differences with simulated data should be used as a general method for assaying

the quality of data resulting from fluctuation assays.

I can assign significance to deviations from the Luria-Delbrück distribution by

simulation.  Data from the 1 x canavanine fluctuation assay (Figure 2-4) give a maximum

likelihood value of m = 4.80 and a sum-of-the-square differences = 1.27 for the one-

parameter model.  To determine the expected sum-of-the-square differences, I simulated
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10,000 72-tube fluctuation assays by sampling from the Luria-Delbrück distribution with

m = 4.80 and calculated the sum-of-the-square differences for each simulated experiment.

I find that only 3.5% of the simulated experiments have a poorer fit to the Luria-Delbrück

distribution than the observed 1 x canavanine data compared to 30% and 41% for 10 x

canavanine and 5FOA respectively.

2.4   Phenotypic mutation rates

Fluctuation assays were performed to determine mutation rates to α-factor, 10 x

canavanine, and 5FOA resistance for ten isogenic clones of a strain from the W303

background  (GIL104); the data were analyzed using the one-parameter and two-

parameter models (Table 2-1 and Table 2-2, respectively).  All fluctuation assays on αF

and six of the ten fluctuation assays on 10 x canavanine are best described by the two-

parameter model.  Whereas, all fluctuation assays on 5FOA and four of the ten

fluctuation assays on 10 x canavanine are best described by the Luria-Delbrück

distribution (the one-parameter model).

Using the combined data from the 10 clones (effectively a fluctuation assay with

720 parallel cultures) and the two-parameter model I determine phenotypic mutation rates

to α-factor, 10 x canavanine, and 5FOA resistance to be 3.07 x 10-6, 1.52 x 10-7, and 5.43

x 10-8, respectively.  For 5FOA resistance, the data are best described by the one-

parameter model (d = 0 for the two-parameter model, meaning that post-plating growth

and mutation does not occur); therefore, I can use equations 24 and 25 from [107] to

assign a 95% confidence interval to my estimate of mutation rate.  This yields a

confidence interval of 5.00 to 5.93 x 10-8 per generation  (Table 2-2).  For the two-



Table 2-1. Per-genome per-generation mutation rates for ten clones of GIL104

Mutation rate

Clone α-factor
R
 (x 10

-6
)  Can

R
 (x 10

-7
) 5FOA

R
 (x 10

-8
)

A 5.51 (4.47-7.03) 2.08 (1.72-2.57) 6.49 (5.12-8.58)

B 5.51 (4.47-7.02) 1.81 (1.49-2.26) 4.77 (3.71-6.44)

C 6.28 (5.13-7.92) 2.21 (1.82-2.76) 7.19 (5.72-9.41)

D 6.58 (5.40-8.26) 1.88 (1.55-2.34) 5.08 (3.94-6.90)

E 5.60 (4.55-7.11) 2.06 (1.70-2.57) 4.48 (3.44-6.15)

F 6.07 (4.97-7.65) 1.87 (1.53-2.34) 6.70 (5.32-8.77)

G 5.35 (4.36-6.78) 1.76 (1.45-2.20) 4.74 (3.68-6.40)

H 6.05 (4.95-7.63) 2.05 (1.70-2.55) 5.01 (3.89-6.78)

I 6.00 (4.91-7.56) 1.79 (1.47-2.23) 7.03 (5.56-9.25)

J 5.50 (4.49-6.95) 2.09 (1.72-2.61) 3.05 (2.27-4.39)

Avg ± Stdev 5.85 ± 0.41 1.96 ± 0.16 5.45 ± 1.34

Combined 5.86 (5.48-6.29) 1.95 (1.83-2.09) 5.43 (5.00-5.93)

Parentheses indicate the 95% confidence intervals calculated using equations 24 and 25 from
Rosche and Foster (2000). The combined data set treats the ten 72-tube fluctuation assays as
one 720-tube fluctuation assay.



Table 2-2.  Fitting data to a two-parameter model of post-plating growth

α-factor resistance Canvanine resistance 5FOA resistance

Clone  
Mut. rate x

10
-6

Div. post
plating

#
Improv. of

fit
 Mut. rate x

10
-7

Div. post
plating

#
Improv. of

fit
 Mut. rate x

10
-8

Div. post
plating

#
Improv. of

fit

A 3.07 1.42
†
0.26 1.76 0.37 0.09 6.49 0 0

B 3.66 0.95
†
0.22 1.16 1.08

†
0.19 4.77 0 0

C 4.17 0.96
†
0.22 1.5 0.94

†
0.21 7.19 0 0

D 2.89 2.45
†
0.37 1.19 1.12

†
0.17 4.97 0.03 0.0006

E 2.14 2.74
†
0.33 1.53 0.67

†
0.14 4.48 0 0

F 3.34 1.48
†
0.24 1.46 0.54

†
0.14 6.7 0 0

G 2.94 1.46
†
0.15 1.69 0.08 0.02 4.74 0 0

H 2.61 2.32
†
0.26 1.88 0.18 0.01 5.01 0 0

I 2.56 2.45
†
0.32 1.48 0.42 0.02 7.03 0 0

J 3.36 1.17
†
0.21 1.55 0.72

†
0.21 3.05 0 0

Avg ± Stdev 3.07 ± 0.59 1.74 ± 0.68 0.26 ± 0.06 1.52 ± 0.23 0.61 ± 0.36 0.12 ± 0.08 5.44 ± 1.34 < 0.01 < 0.01

*
Combined

 
3.07 1.66

†
0.26  1.52 0.57

†
0.12  5.43 0 0

The mutation rates are the phenotypic mutation rates per genome per generation.

* 
The combined data set treats the ten 72-tube fluctuation assays as one 720-tube fluctuation assay.

# 
The improvement of fit is a measure of how much better the data fit to the two-parameter model, which incorporates post plating

growth and mutation, than to the one-parameter model, where all mutants arose during the growth of the culture.  For both models
we calculate the sum-of-the-squared differences between the cumulative distribution of the data and the best-fit curve.  We define the
improvement of fit as the decrease in the sum-of-the-square differences between the one-parameter and the two-parameter models.

† 
Fluctuation assays where the two-parameter model is accepted over the one-parameter model by Akaike information criterion (see

text and Akaike 1974).
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parameter model I determined confidence intervals by simulation.  For each combined

720-culture fluctuation assay I determined the most-likely values for m and d, given the

data.  In order to gauge the expected variation in these parameters, I simulated 1000

fluctuation assays by sampling the combined Luria-Delbrück/Poisson distribution using

parameters determined from the data (Figure 2-5).  I take the 95% confidence intervals

for my estimates of m to be the values of m that encompass 95% of the simulated

experiments.  From this I calculate the 95% confidence intervals on the two-parameter

model to be 2.65 to 3.62 x 10-6, 1.34 to 1.71 x 10-7, and 4.78 to 5.87 x 10-8 for α-factor, 10

x canavanine, and 5FOA resistance, respectively.



2.521.510 0.5
0

2.5

2

1.5

1

0.5
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d

5FOA

10 x canavanine

-factor

Figure 2-5.  Simulation of fluctuation assays.  To determine confidence intervals for values of m 
generated from the two-parameter model, 1000 720-tube fluctution assays were simulated using 
the values for m and d estimated from the combined fluctuaiton assays (indicated by the large 
symbols; m = 2.04 d = 0.57, m = 1.11 d = 0, m = 1.15 d = 1.66 for 10 x canavanine, 5FOA, and 

-factor, respectively).  For each simulated fluctuation assay the most likely values for m and d 
were calculated using the two-parameter model (small symbols).
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Chapter 3

Effective target size and the per-base-pair
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3.1   Materials and methods

Sequencing of ura3 and can1 mutants

Computational Analysis

3.2   Mutational spectra

Determining mutational spectra

Analyzing mutational spectra
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3.3   Effective target size

Definition of effective target size

Calculation of effective target size and the per-base-pair mutation rate

Discussion of effective target size

Target size for mutations conferring resistance to α-factor

3.4   Mutation rate per base pair per generation



40

Abstract

In order to convert phenotypic mutation rates into per-base-pair mutation rates

one needs to estimate the effective target size for phenotypic mutation.  Although the

concept of effective target size is important in evolutionary theory—it links the mutation

rate to a particular phenotype to the mutation rate per genome per generation—it has not

been explicitly defined.  In this chapter, I propose a definition of effective target size that

illustrates the relationship between phenotypic and genomic mutation rates, shows where

uncertainties in estimates of genomic mutation rate arise, and provides a method for

calculating this parameter from experimental data.  Combining the estimates effective

target size for loss-of-function at URA3 and CAN1 with the phenotypic mutation rates in

Chapter 2, I conclude that the per-base-pair mutation rate at URA3 and CAN1 is 3.80 x

10-10 and 6.44 x 10-10 per base pair per generation, respectively, suggesting that the

mutation rate varies across the yeast genome.

3.1   Materials and methods

Sequencing of ura3 and can1 mutants:  Table 3-1 lists the primers that were

used to amplify and sequence the ura3 and can1 alleles from 5FOA and 10 x canavanine

resistant colonies, respectively.  Prior to the isolation of genomic DNA, 5FOA and 10 x

canavanine resistant colonies were restreaked on selective media.

Computational Analysis:  Matlab was used to bootstrap estimates of effective

target sizes to generate 95% confidence intervals.  Yeast coding and non-coding

sequences were downloaded from ftp site of the Saccharomyces genome database

(http://www.yeastgenome.org, orf_coding.fasta.gz and NotFeature.fasta.gz).  Each file



Table 3-1.  Primers used in Chapter 3

Primer Name Sequence Purpose

URA3extF 5’ ATCAAAGAAGGTTAATGTGG 3’ PCR

URA3extR 5’ TCATTATAGAAATCATTACG 3’ PCR/Sequencing

URA3extF3 5’ TTGATTCGGTAATCTCCGAG 3’ Sequencing

URA3intF2 5’ TGGGCAGACATTACGAATGC 3’ Sequencing

URA3intR2 5’ CAAACCGCTAACAATACCTG 3’ Sequencing

CAN1extF2 5’ TCTTCAGACTTCTTAACTCC 3’ PCR

CAN1extR2 5’ ATAGTAAGCTCATTGATCCC 3’ PCR/Sequencing

CAN1ext/intF1 5’ AAAAAAGGCATAGCAATGAC 3’ Sequencing

CAN1intF2 5’ GACGTACAAAGTTCCACTGG 3’ Sequencing

CAN1intF3 5’ TCAAAGAACAAGTTGGCTCC 3’ Sequencing

CAN1intR2 5’ TAGATGTCTCCATGTAAGCC 3’ Sequencing

CAN1intR3 5’ AACTTTGATGGAAGCGACCC 3’ Sequencing
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was concatenated into one string and the coding sequence was shuffled to generate the

randomized coding sequence.  To calculate the frequency distribution for motifs of length

x, bases 1 through x and were used as a query and searched for the next occurrence of that

sequence starting at base x+1.  The search was terminated once a match was found or if

there was no match within 150 base pairs.  This process was reiterated for bases 2

through x+1, 3 through x+2, and so on, until the end of the sequence was reached.

3.2   Mutational spectra

Determining mutational spectra:  I wanted to convert the phenotypic mutation

rates to per-base-pair mutation rates.  The raw material for this conversion is the

mutational spectra; from the fluctuation assays in Chapter 2, I sequenced 237 ura3 alleles

and 227 can1 alleles from 5FOA and 10 x canavanine resistant strains, respectively.

Thirty 5FOA resistant mutants contain wild-type URA3 alleles; 29 of these mutants are

uracil prototrophs.  It has been reported that mutations in FUR1 can confer this

phenotype; however, I failed to find any mutations within the coding sequence of this

gene for any of the 29 5FOA resistant uracil prototrophs (data not shown).  None of the

207 ura3 mutants are prototrophic, and each contains a single mutation or two mutations

within a few nucleotides.  There are 167 base-pair substitutions (64 nonsense and 103

missense), 22 single-base-pair deletions, three two-base-pair deletions, three single-base-

pair insertions, one three-base-pair insertion, two large tandem duplications and nine

double mutations (Figure 3-1).  All 227 10 x canavanine resistant mutants contain a

single mutation or closely adjacent mutations at the CAN1 locus.  I find 150 base-pair

substitutions (70 nonsense and 80 missense), 55 single-base-pair deletions, eight single-



TAA

TAA TAG TAA

TAA TAG GAC TGA TAA TAG TAG

G R D A K V E G E R Y R K A G W E A Y L R R C G Q Q N *
GGA AGG GAT GCT AAG GTA GAG GGT GAA CGT TAC AGA AAA GCA GGC TGG GAA GCA TAT TTG AGA AGA TGC GGC CAG CAA AAC TAA 804

AGC
AGC
GAC TAA CGT
GAC TAA CAC CGT
GCC TAA TAA CAC GAT TTT AGA
GTC TAA TAA CAC GAT GAG TGA TTT GAA
GTC TAA TGA TAG CCA CGC GAT GAG TGA TAA TGA TAT TTT TGA TAG

G F I A Q R D M G G R D E G Y D W L I M T P G V G L D D K G D A L G Q Q Y R T V D D V V S T G S D I I I V G R G L F A K
GGC TTT ATT GCT CAA AGA GAC ATG GGT GGA AGA GAT GAA GGT TAC GAT TGG TTG ATT ATG ACA CCC GGT GTG GGT TTA GAT GAC AAG GGA GAC GCA TTG GGT CAA CAG TAT AGA ACC GTG GAT GAT GTG GTC TCT ACA GGA TCT GAC ATT ATT ATT GTT GGA AGA GGA CTA TTT GCA AAG 720

-AA -GA -T -T -C -A
-A

CGC
GAC TAA TGA

GAC TAA TGA

GAC CAT TAA TAA TGA

GAA TAG TAA TAG ATA GAC CAT TAA TAG TAA TGA GAG GAT

A H G V V G P G I V S G L K Q A A E E V T K E P R G L L M L A E L S C K G S L A T G E Y T K G T V D I A K S D K D F V I
GCA CAC GGT GTG GTG GGC CCA GGT ATT GTT AGC GGT TTG AAG CAG GCG GCG GAA GAA GTA ACA AAG GAA CCT AGA GGC CTT TTG ATG TTA GCA GAA TTG TCA TGC AAG GGC TCC CTA TCT ACT GGA GAA TAT ACT AAG GGT ACT GTT GAC ATT GCG AAG AGC GAC AAA GAT TTT GTT ATC 540
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Figure 3-1.  Mutational spectra for 5FOA resistant ura3 mutants.  207 mutations are shown.  Black text represents missense mutations; white 
text on a black background represents nonsense mutations.  A horizontal line separates different mutations at the same codon.  Complex 
mutational events such as large duplications and multiple mutations in the same strain are indicated below the nucleotide sequence.
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Figure 3-2.  Mutational spectra for canavanine resistant can1 mutants.  Continued on next page.
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Figure 3-2 (continued). Mutational spectra of canavanine resistant can1 mutants.  227 mutations are shown.  Black text represents missense 
mutations; white text on a black background represents nonsense mutations.  A horizontal line separates different mutations at the same codon.  
Complex mutational events such as large duplications and multiple mutations in the same strain are indicated below the nucleotide sequence.
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base-pair insertions, one two-base-pair insertion, ten double mutations, and three

complex mutations including a can1 allele containing a 27 base pair deletion and a 30-

base-pair tandem duplication (Figure 3-2).

Analyzing mutational spectra:  I sequenced 237 5FOA resistant ura3 alleles and

227 10 x canavanine resistant can1 alleles in order to determine the locus-specific

effective target size for phenotypic mutations.  From these data sets one can garner

additional information regarding the mutagenic processes leading to loss of function at

URA3 and CAN1.  Nonsense mutations represent a larger fraction of base pair

substitutions in the can1 data set (47% versus 38%).  This indicates that a larger fraction

of missense mutations cause loss of function for URA3 (10.9% versus 6.8% as calculated

by dividing the number of possible loss-of-function missense mutations by the number of

possible missense mutations).  This difference is reflected in my calculation of locus-

specific effective target size where, although the coding sequence of CAN1 is 2.2 times

larger, the effective target size for loss of function by way of base-pair substitutions is

only 1.6 times larger (see below).  Loss-of-function mutations in the mutational spectra

are overrepresented at conserved residues (p = 1.5 x 10-5, Wilcoxon rank-sum, A. Singhal

and A. Segre, data not shown).  In my compiled URA3 and CAN1 mutational spectra I

identified 88 single base-pair insertions/deletions in which deletions were

overrepresented by 7:1 (p < 0.001, Chi-square).

There are two ways I can test whether mutations occur randomly within the target

sequences.  Since I know every position where a nonsense mutation can occur I can ask if

mutations fall randomly over these sites.  When looking at the distribution of nonsense

mutations I assume that all nonsense mutations result in loss of function.  For URA3 this
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assumption is reasonable since the data set includes a nonsense mutation eight amino

acids before the stop codon removing the last 1% of the protein.  Dividing the URA3 and

CAN1 sequences into fifths I find that the observed number of nonsense mutations in

each region does not differ significantly from expectation (URA3:  observed, 10, 10, 19,

10, 15; expected, 13, 12, 12, 11, 16, p > 0.05, Chi-square; CAN1:  observed, 10, 18, 17,

14, 11; expected, 14, 15, 13, 13, 15, p > 0.05, Chi-square).

In addition, I can test for mutational hotspots/coldspots by asking if the number of

times I found a given base-pair substitution deviates from what I would expect from

binomial sampling.  For URA3 the number of mutations I identified 0, 1, 2, 3, or 4 times

is 206, 71, 18, 12, and 6.  This deviates significantly from the expectation of binomial

sampling (184, 98, 26, 5, and 1; p < 0.01, Chi-square).  Similarly, for CAN1 the number

of mutations I identified 0, 1, 2, 3, or 4 times is 373, 91, 20, 5, and 1, which deviates

significantly from binomial sampling (360, 111, 17, 2, and 0; p < 0.05, Chi-square).

Therefore, although I do not see regional biases in the mutational spectra I do find

particular substitutions to be over/under-represented, possibly reflecting biases due to

local sequence context effects.  The variation I find in the yeast URA3 and CAN1 genes is

significantly less that the degree of variation seen across the LacI gene in E. coli [84].

I found 20 instances of multiple mutation events occurring in the same strain.

One can1 allele contains a 27 base pair deletion and a 30 base pair imperfect duplication

separated by 312 wild-type base pairs.  The remaining 20 were multiple mutation events

occurring within a few nucleotides of each other; 9 in ura3 and 11 in can1 (Table 3-2).

In one case the same complex mutation, a double deletion and base-pair substitution, was

found in two can1 strains which were adjacent during much of the processing



Table 3-2.  Multiple mutation events

Class Gene Intervening WT bases

Substitution/Substitution URA3 0

URA3 0

URA3 0

CAN1 0

URA3 1

CAN1 1

CAN1 2

Substitution/Deletion CAN1 0

CAN1 0

URA3 1

CAN1 1

CAN1 2

CAN1 3

Substitution/Insertion URA3 0

URA3 0

CAN1 0

CAN1 0

URA3 1

URA3 3

Double Deletion/Substition CAN1 8

Insertion/Deletion CAN1 312
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(restreaking, genomic DNA preparation, PCR, and sequencing); therefore, this may

represent a single event which was inadvertently sampled twice.  Half of the multiple

mutation events are interspersed with one or more bases of wild type sequence; therefore,

multiple mutation events must have occurred.  These events may represent instances

where lesion bypass has occurred and the multiple mutations result from decreased

fidelity of translesion polymerases [44].  The translesion polymerase Polζ can efficiently

extend unpaired primer termini resulting from incorporation opposite a lesion and it is

thought that up to half of all spontaneous mutations occur in a Polζ-dependent manner

[61, 104, 106].

Four large insertion/deletion mutations were found.  These include tandem

duplications of 24 and 57 base pairs in URA3, and a 30-base-pair tandem duplication and

a 27-base-pair deletion in the same can1 mutant.  In addition, in another sequencing

experiment (Chapter 5), an additional 18-base-pair tandem duplication was identified.

All five mutations are flanked by 4 to 6 base pair repeats (or imperfect repeats) and result

in in-frame insertions/deletions.  One might assume that the probability of an event

between nearby repeats leading to an in-frame mutations is 1/3; therefore the probability

of detecting five in-frame mutations is (1/3)5 = 0.4%. However, due to constraints on

amino acid and codon usage, particular nucleotide motifs may be overrepresented in one

of the three frames resulting in events between tandem repeats being more likely to result

in in-frame mutations than expected.  I tested this using three data sets:  a concatenated

string consisting of all yeast coding sequences (8,755,812 base pairs), a concatenated

string consisting of all yeast non-coding sequences (3,091,831 base pairs), and a string

consisting of the shuffled sequence of all yeast coding sequences (8,755,812 base pairs).
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In each data set I determined the distance between sequence motifs.  For each sequence

motif along a string I determined the distance to the next occurrence of that sequence. For

yeast coding sequences (but not non-coding or randomized coding sequences) the

frequency distribution for the distances between nearest occurrences of a given motif is

punctuated at every third position (Figure 3-3) resulting for a 43% chance that events

between 4 base pairs motifs will result in an in-frame mutation.  The in-frame probability

increases with motif length and is above 50% for motifs greater that 5 base pairs (Figure

3-3).

Per-base-pair rate of nonsense mutations:  From the results thus far, I can

calculate the per-base-pair mutation rate to nonsense mutations at the CAN1 and URA3

genes.  First I need to correct the phenotypic mutation rate to 5FOA resistance to take

into account that only 207 out of 237 5FOA mutants are URA3 mutants.  This results in a

mutation rate for loss of function of 4.75 x 10-8 for URA3 and 1.52 x 10-7 for CAN1.  If I

multiply these rates by the fraction of nonsense mutations in the mutational spectra I find

that the rate of nonsense mutations at URA3 and CAN1 is 1.47 x 10-8 and 4.69 x 10-8,

respectively.  For URA3 and CAN1, I counted the number of possible nonsense

substitutions from the known sequences of these genes.  URA3 is 804 base pairs;

therefore, there are 2412 possible substitutions (804 base pairs x 3 possible substitutions

per base pair).  Of these, 123 result in nonsense mutations.  By dividing these rates by the

number of possible nonsense substitutions and multiplying by 3, since there are 3

possible mutations at each base, I find that the nonsense mutation rate normalized per

base pair is 3.58 x 10-10 for URA3 and 6.21 x 10-10 for CAN1.  Repeating the above

analysis for all ten fluctuation assays at CAN1 and URA3 from Table 3-2 I find that the
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Figure 3-3.  Probability of in-frame slippage events in the yeast genome.  Gaps between 
repeated six-base-pair sequence motifs in coding sequences are biased towards multiples of 
three base pairs.  Using each six-base-pair sequence motif along concatenated total coding, 
non-coding, and randomized coding yeast sequences (see methods), we determined the 
frequency with which we find the next occurrence of the motif at a given position away from the 
starting sequence.  For a given six-base-pair motif in coding sequences (but not non-coding or 
randomized coding sequences) the next occurrence of the motif is more likely to be found in the 
same frame than in either of the other two frames.  The in-frame probability increases with the 
sequence motif length.  The pronounced peaks at 36 base pairs and 72 base pairs are attribut-
able to an imperfect 36-base-pair subtelomeric repeat found in both coding and non-coding 
sequences (Horowitz and Haber 1984).
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per-base-pair nonsense mutation rates differ significantly at these two loci (Wilcoxon

rank-sum, p < 1.83 x 10-4).  These calculations were performed with mutation rates from

the two-parameter model, correcting for post-plating growth and mutation on canavanine

plates.  Had I used the one-parameter model, the difference in mutation rates between

URA3 and CAN1 would have been greater, since the one-parameter model overestimates

the phenotypic mutation rates to canavanine resistance.

3.3   Effective target size

Definition of effective target size:  I define effective target size as the size of the

genome, G, multiplied by the probability that introducing a single genomic mutation (this

could be a base-pair substitution, insertion/deletion, transposition, etc.) will result in the

phenotype of interest:

€ 

τ =G ⋅ P{mutation results in phenotype |mutation in genome}.

Thus, the effective target size to canavanine resistance is

€ 

τ
Can

R =G ⋅ P{mutation results in Can
R
|mutation in genome}.

One can specify the effective target size given a particular class of mutation.  For

instance, the target size for mutation to canavanine resistance by way of a base-pair

substitution is

€ 

τ
Can

R
| BPS

=G ⋅ P{BPS results in Can
R
|BPS in genome}.

Furthermore, one can restrict the region of the genome in question to define a locus-

specific effective target size.  For example, the locus-specific effective target size for

canavanine resistance by way of a base-pair substitution at the CAN1 locus is

€ 

τ
Can

R
| BPS

CAN1
= (1773 bp) ⋅ P{BPS results in Can

R
|BPS at CAN1}
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were 1773 base pairs is the size of the CAN1 locus.  Notice that

€ 

µ
Can

R

τ
Can

R

= ˆ µ bp =
Ug

G
,

where 

€ 

µ
Can

R  is the mutation rate to canavanine resistance, 

€ 

ˆ µ bp  is the genome-wide

average mutation rate per base pair per generation, and 

€ 

Ug  is the mutation rate per-

genome per-generation.  Similarly,

€ 

µ
Can

R

τ
Can

R

CAN1
= µbp

CAN1,

where 

€ 

τ
Can

R

CAN1 is the locus-specific effective target size for canavanine resistance at the

CAN1 locus and 

€ 

µbp

CAN1 is the average mutation rate per base pair per generation at the

CAN1 locus.  

€ 

τ
Can

R

CAN1 and 

€ 

µbp

CAN1 are related to 

€ 

τ
Can

R  and 

€ 

ˆ µ bp  through the parameter λCAN1

which is the ratio of the mutation rate at the CAN1 locus compared to the genome-wide

average; λ = 1 identifies loci where the mutation rate equals the genomic average, loci

where λ < 1 are coldspots, and those where λ > 1 are hotspots:

€ 

λCAN1 ⋅ τ
Can

R

CAN1
= τ

Can
R , and

€ 

µbp

CAN1 = λCAN1
⋅ ˆ µ bp .

Calculation of effective target size and the per-base-pair mutation rate:  The

effective target size to canavanine resistance,

€ 

τ
Can

R , is difficult to determine

experimentally; however, from mutational spectra I can determine the locus-specific

effective target size to canavanine resistance conditioned on a mutation at the CAN1

locus,

€ 

τ
Can

R

CAN1, by rewriting it as

€ 

τ
Can

R

CAN1
= fBPS ⋅ τCan R

| BPS

CAN1
+ f INDEL ⋅ τCan R

| INDEL

CAN1 ,
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where 

€ 

fBPS  and 

€ 

fINDEL  are the frequency with which base pair substitutions and insertion,

deletion, or other DNA rearrangements (which I collectively refer to as indels) occur.

Assuming that all indels in CAN1 result in loss of function, 

€ 

τ
Can

R
| INDEL

CAN1  is 1773 base pairs.

To determine 

€ 

τ
Can

R
| BPS

CAN1 , I separated the observed base-pair substitutions into nonsense

and missense (70 and 80, respectively).  CAN1 contains 226 possible nonsense

substitutions 54 of which I found (as expected, some mutations were identified multiple

times).  The 80 missense mutations represent 63 unique substitutions.  Assuming I

identified the same proportion of possible missense and nonsense mutations, I can

calculate the possible number of missense mutations conferring canavanine resistance as

63(226/54) = 264.  Since there are three possible substitutions at each base, the locus-

specific effective target size for canavanine resistance at the CAN1 locus by way of

missense and nonsense mutations is 264/3 = 88 base pairs and 226/3 = 75 base pairs,

respectively.  From the CAN1 sequence I know the location of every nonsense mutation.

I also know that there are 264 possible missense mutations; however, this method is blind

to the locations of mutations other than those identified in the mutational spectra.  A

locus-specific effective target size for missense mutations of 88 base pairs could

represent 88 positions where any of the three possible substitutions causes a phenotype,

or 264 positions where only one out of three substitutions causes a phenotype, or

something in between.

Combining locus-specific effective target sizes for nonsense and missense

mutations I find that

€ 

τ
Can

R
| BPS

CAN1  = 88 bp + 75 bp = 163 bp.
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 This locus-specific effective target size indicates that 163/1773 (9%) of base-pair

substitutions at the CAN1 locus result in canavanine resistance.  In order to calculate the

mutation rate per base pair per generation by way of base-pair substitutions, I need to

consider that only 150 of 227 mutations detected at the CAN1 locus were base-pair

substitutions; therefore,

€ 

µbp | BPS

CAN1  = 1.52 x 10-7 (150 / 227) / 163 bp = 6.15 x 10-10 /bp/generation,

I can now calculate the mutation rate per base pair per generation for all mutations.  The

frequency of base-pair substitutions and indel mutations in the CAN1 mutational

spectrum is 150/227 (~66%) and 77/227 (~34%), respectively, but only 9% of base pair

substitutions result in canavanine resistance.  Thus the fraction of mutations that are

substitutions, 

€ 

fBPS , is actually 0.95 (

€ 

fBPS  = (0.66/0.09)/((0.66/0.09) + 0.34)) and those

that are indels,

€ 

fINDEL , is only 0.05.  Using these values, I estimate the locus-specific

effective target size to canavanine resistance at the CAN1 locus to be

€ 

τ
Can

R

CAN1 = (0.95)(163 bp) + (0.05)(1773 bp) = 236 bp; therefore,

€ 

µbp

CAN1 = 1.52 x 10-7 / 236 bp = 6.44 x 10-10 /bp/generation.

Similar calculations for URA3 show that

€ 

τ
5FOA

R
| BPS

URA3  = 104 bp, and

€ 

τ
5FOA

R

URA3  = 125 bp.

Taking into account that only 207 of the 237 5FOA resistant mutants sequenced were

ura3 mutants, the rate of mutation to 5FOA resistance at URA3 is 4.75 x

10-8/cell/generation.  Thus I calculate

€ 

µbp | BPS

URA3  = 4.75 x 10-8 (167 / 207) / 104 bp = 3.68 x 10-10 /bp/generation, and



56

€ 

µbp

URA3 = 4.75 x 10-8 / 125 bp = 3.80 x 10-10 /bp/generation.

Discussion of effective target size:  The mutation rate per genome per generation

is a fundamental parameter in molecular evolution.  Here I introduce the effective target

size (τ) to phenotypic mutation as a way to link the mutation rate per genome per

generation to the measurable phenotypic mutation rate.  I have defined effective target

size as

€ 

τ =G ⋅ P{mutation results in phenotype |mutation in genome}.

I use a bottom up approach based upon mutational spectra to calculate the effective target

size to phenotypic mutation.  For example, for canavanine resistance I first calculate the

effective target size to phenotypic mutation by way of a base-pair substitution at the

CAN1 locus (

€ 

τ
Can

R
| BPS

CAN1  = 163 base pairs).   Intuitively this means that if one considers

only base-pair substitutions, the CAN1 gene is effectively 163 base pairs where any base-

pair substitution will result in canavanine resistance.  This value is then used to calculate

the locus-specific effective target size to canavanine resistance by way of any mutation

(

€ 

τ
Can

R

CAN1 = 236 base pairs) meaning that CAN1 is effectively 236 base pairs where any

mutation will result in canavanine resistance.  In order to calculate 

€ 

τ
Can

R

CAN1 one needs to

weight the effective target sizes for canavanine resistance by way of each particular class

of mutation by the frequency with which that mutation occurs.

The effective target sizes that are calculated are valid only as long as the

frequencies of particular classes of mutation are conserved and, therefore are likely to

vary between strain backgrounds and growth conditions.  Varying the selective media

may alter the fraction of missense mutations; for example some ura3 mutants will form

colonies at low concentrations of 5-fluoro-orotic acid but not at high ones.  Therefore, it
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is critical that I determined the effective target sizes by sequencing mutant ura3 and can1

alleles from the same plates that were used for the fluctuation assays.

Genes of similar lengths may have very different effective target sizes.

Mutational hotspots such as microsatellite sequences and poly-nucleotide runs will

increase the effective target size by increasing the local rate of frameshift mutations.

Mutator alleles not only increase the mutation rate, but also influence the effective target

size by altering the mutational spectra.  In addition, since mutation rates are believed to

vary across the genome [46, 50], the effective target size may change if a gene is moved

to a different location.  In the context of this experiment, if CAN1 were moved to a

location in the genome where the mutation rate is two-fold higher than at its endogenous

locus, the target size will be twice as large, since, given the definition of effective target

size, moving the gene doubles the probability of a mutation resulting in canavanine

resistance given a single mutation occurring anywhere in the genome.  In my notation, I

do not explicitly state that the CAN1 gene is at endogenous location.  I do, however,

indicate that my estimate of locus-specific effective target size is conditioned upon a

mutation within the 1773 base-pair region of the CAN1 coding sequence.  I specify this

with the superscript CAN1 (

€ 

τ
Can

R

CAN1) to distinguish this locus-specific effective target size

from the effective target size for a mutation occurring anywhere within the genome

(

€ 

τ
Can

R ).  

€ 

τ
Can

R

CAN1 and 

€ 

τ
Can

R  are related by the hotspot parameter λ,

€ 

λCAN1 ⋅ τ
Can

R

CAN1
= τ

Can
R .

Target size for mutations conferring resistance to α-factor:  If I take 

€ 

ˆ µ bp  to be the

average of the per-base-pair mutation rates at CAN1 and URA3, 5.12 x 10-10, I can

estimate the effective target size for mutation to α-factor resistance as
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€ 

τ
αF R = µ

αF R / ˆ µ bp  = 3.07 x 10-6 / 5.12 x 10-10 = 5996 bp.

Taking the mean ratio of target size to gene size for CAN1 and URA3, 0.14, this suggests

the total length of genes in which a loss-of-function mutation results in α-factor

resistance is 41.5 kilobase pairs.  Summing over the lengths of known targets (STE2,

STE4, STE5, STE7, STE11, STE12, STE20, STE50, FAR1, and FUS1) accounts for only

18.6 kilobase pairs.  There are four possible explanations for this inconsistency.  There

could be unidentified genes whose inactivation results in α-factor resistance; however,

given the degree to which the mating pathway has been studied, it is unlikely that enough

components remain unidentified to account for this difference.  It is could be that many

more loss-of-function missense mutations are possible for signaling proteins than for

enzymes or transporters.  The third possibility is that a change of the mating type locus

from MATa to MATα provides an additional class of mutation to α-factor resistance.

Although the strain used in this study is heterothallic, a spontaneous double-strand break

at the MAT locus can be repaired off of the silent HMLα cassette resulting in mating type

switching and α-factor resistance.  The rate of mating type switching in heterothallic

yeast is estimated to be between 10-7 and 10-6 [56].  An additional possibility is that CAN1

and URA3 are located in regions that are coldspots compared to the genome-wide average

mutation rate (or one or more of the genes involved in α-factor resistance could be

located in a mutational hotspot; however, since the target for α-factor resistance is spread

over the genome, it likely averages over local hotspots and coldspots).  Asserting that the

known genes that can mutate to confer α-factor resistance have an average λ of 1 predicts

λCAN1 = 0.55 and λURA3 = 0.32.
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3.4   Mutation rate per base pair per generation

I measured phenotypic mutation rates and, from the same experiments, the locus-

specific effective target sizes to phenotypic mutation.  My results indicate that the per-

base-pair mutation rate at URA3 and CAN1 is 

€ 

µbp

URA3 = 3.80 x 10-10 and 

€ 

µbp

CAN1 = 6.44 x 10-10

per base pair per generation, respectively.  Drake [22] obtains similar values, but his

method differs slightly.  He also utilizes fluctuation assays and mutational spectra;

however, rather than calculate the effective target size to phenotypic mutation, Drake

estimates the number of base-pair substitutions that occurred in the coding sequence as

64/3 times the number of nonsense mutations detected, ignoring missense mutations

detected in the mutational spectra.  He then calculates a correction factor (the inverse of

the detection frequency) to scale the mutation rate then divides the corrected mutation

rate by the size of the open reading frame.

In principle Drake’s method and mine should yield similar values for the per-

base-pair mutation rate.  Analyzing mydata using the Drake method yields estimates of

€ 

µbp

URA3 = 3.49 x 10-10 and 

€ 

µbp

CAN1 = 5.92 x 10-10 per base pair per generation, respectively.

Drake converts the per-base-pair mutation rate to a per-genome mutation rate by scaling

to the size of the genome.  Since these estimates of the per-base-pair mutation rate are

specific for particular loci, scaling up is accurate only if mutation rate is uniform across

the genome.  Several experiments suggest that mutation rate varies across the genome by

at least an order of magnitude [46, 50].  On a genomic scale, URA3 and CAN1 are

relatively close (83 kilobases apart on the left arm of Chromosome V) yet my two point

estimates of the per-base-pair mutation rate differ by a factor of 1.7.
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In order to determine if this difference in mutation rate is significant, I need to

place confidence limits on the per-base-pair mutation rate estimates.  In Section 2.4, I

showed that the 95% confidence intervals for my estimates of phenotypic mutation rate

are 1.34 to 1.71 x 10-7, and 4.78 to 5.87 x 10-8 for resistance to 10 x canavanine and

5FOA, respectively.  Since only 207 of 237 5FOA resistant mutation are URA3 mutants,

the 95% confidence interval for the rate of loss of function of URA3 is 4.17 to 5.13 x 10-8.

I used a bootstrapping method to generate 95% confidence intervals around the

estimates of the effective target size by discarding 25% of the mutational spectra data and

recalculating the effective target sizes.  This process was iterated 10,000 times for both

€ 

τ
5FOA

R

URA3  and 

€ 

τ
Can

R

CAN1.  The range of these distributions is 99.90 to 162.82 and 190.64 to

285.60 for 

€ 

τ
5FOA

R

URA3  and 

€ 

τ
Can

R

CAN1.  Excluding the extreme 2.5% at either end of the

distribution, 95% of the values lie between 109.17 and 140.81 for 

€ 

τ
5FOA

R

URA3  and between

207.16 and 257.73 for 

€ 

τ
Can

R

CAN1.  To place conservative confidence limits on the per-base-

pair mutation rate estimates I took the lower bound for phenotypic mutation rate divided

by the upper bound for the effective target size and vice-versa.  This yields non-

overlapping confidence intervals of 2.96 to 4.70 x 10-10 and 5.21 to 8.24 x 10-10 per base

pair per generation for 

€ 

µbp

URA3 and 

€ 

µbp

CAN1, respectively.

In this chapter, I have shown that the per-base-pair mutation rate varies on two

length scales:  between different positions within the CAN1 and URA3 genes and between

the genes themselves.  It is possible that these two observations are related; however,

since I measured forward mutation rates over large targets, I likely averaged over the

local sequence effects.  Therefore, the difference in the per-base-pair mutation rate I

observe between CAN1 and URA3 is most likely due to mutation rate variation on a
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larger scale.  Ito-Harashima et al. [50] find that the frequencies of ochre suppressor

mutations, detected at eight identical tRNA-Tyr alleles, vary by a factor of about 20.

Hawk et al. [46] show that the rate of microsatellite frameshift mutations varies 16-fold

across the genome, due in part to variation in the efficiency of mismatch repair.

Consistent with this, I show that the per-base-pair per-generation spontaneous mutation

rate is non-uniform across the genome and varies about 2-fold between two reporters, 83

kilobases apart, on the left arm of Chromosome V.
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Abstract

Results from the previous chapter suggest that mutation rate is non-uniform

across the yeast genome.  Previous experimental studies also support this conclusion.  In

order to characterize mutation rate variation across the genome more precisely, I

measured the mutation rate of the URA3 reporter integrated at 43 different locations tiled

across Chromosome VI.  In this chapter, I show that mutation rate varies six-fold across

the genome, that this variation is correlated with replication timing, and I propose a

model to explain this variation that relies on the temporal separation of two processes for

replicating past damaged DNA:  error-free DNA damage tolerance and translesion

synthesis.  This model is supported by the observation that eliminating translesion

synthesis decreases this variation.  These results are discussed in relation to previous

studies and their biological significance is examined.

4.1   Introduction

In Chapter 3, I presented evidence for a two-fold difference in the per-base-pair

mutation rate between the URA3 and the CAN1 loci in yeast.  This is consistent with

previous reports of mutation rate variation within the yeast genome.  One experiment

looked at the frequency at which tRNA-Tyr ochre suppressors occur [50].  Ochre

suppressor mutations occur when a GC to TA transversion converts the GTA tRNA-Tyr

anticodon into TTA, which is capable of decoding the TAA ochre stop codon.  Ochre

suppressors can be isolated based on their ability to read through an ochre stop codon in a

reporter gene.  The yeast genome contains eight nearly identical tRNA-Tyr genes

distributed between five chromosomes, containing only one polymorphic site located in
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the intron [50].  Assuming that mutation rates are uniform across the yeast genome, one

would expect each of the ochre suppressor mutations (SUP2-o, SUP3-o, SUP4-o, SUP5-

o, SUP6-o, SUP7-o, SUP8-o, and SUP11-o) to occur with equal probability.  However,

when 126 independent ochre suppressor mutations were analyzed it was found that the

tRNA-Tyr genes do not mutate at equal frequency; SUP6-o mutations represent 31% of

the ochre suppressors whereas SUP2-o and SUP8-o combined represent only 3%,

suggesting that the rate of GC to TA transversions is non-uniform across the yeast

genome [50].  The authors rule out that this variation is due to trivial causes such as the

intron polymorphism or the ability of each tRNA-Tyr to act as a suppressor by showing

that the suppressor frequency is not correlated with the identity of the polymorphism or

the strength of the suppressor.  In addition, the rate of tRNA-Tyr ochre suppressor

mutations is uncorrelated with replication timing, the rate of fork movement, or proximity

to centromeres, telomeres, Ty or delta elements [50].  However, the orientation of the

tRNA-Tyr gene relative to the nearest origin of replication may account for some of the

variation observed in mutation frequency.  The three least-frequently observed ochre

suppressor genes are transcribed in the same direction as replication fork movement,

whereas the other five ochre suppressor genes are in the opposite orientation relative to

the replication fork [50].

 Another experiment examined the effect of genome position on the stability of a

microsatellite sequence by placing 16.5 copies of the GT dinucleotide in frame with the

URA3 reporter and integrating this construct at ten locations across the yeast genome

[46].  The locations for integration of this construct were chosen to be near genomic

features such as centromeres, telomeres, replication origins, and at the SUP2-o and
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SUP6-o loci, which were shown to mutate at different frequencies.  Between these ten

strains there is a 16-fold difference in the mutation rate to 5FOA resistance, and the

majority of these mutations resulted from frameshift mutations within the polyGT tract.

Mismatch repair is primarily responsible for correcting these types of mutations [31, 60].

In order to determine if this mutation rate variation is due to variation in the production of

errors or to variation in the ability to correct errors, a key gene involved in mismatch

repair, msh2, was deleted in six of the strains.  In the mismatch repair deficient strains the

mutation rate variation is reduced from 16-fold to two-fold, suggesting that the variation

in microsatellite stability across the genome is largely due to variation in the efficiency of

mismatch repair [46].

Although the authors were able to identify mismatch repair as the mechanism

responsible for variation of microsatellite stability, they were unable to identify genomic

features underlying the variation in the efficiency of mismatch repair.  The rate of

microsatellite frameshift mutations is not correlated with proximity to replication origins,

orientation relative to replication origins, replication timing, rates of transcription, or GC

content [46].  The authors propose that this variation may result from differences in the

ability of mismatch repair to recognize and/or access mismatched bases [46].

In order to better characterize the degree of mutation rate variation within the

yeast genome, I sought to integrate the URA3 gene at different locations in the yeast

genome and, using the fluctuation assay, measure the rate of mutation in each strain.  To

aid in strain construction, I took advantage of the existence of the yeast deletion

collection, where every non-essential open reading frame (ORF) was systematically

deleted and replaced with the KanMX4 reporter, conferring resistance to the drug G418
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[139].  To integrate URA3 at different locations, strains were pulled from the deletion

collection and the KanMX4 cassette was replaced with the URA3 gene.  Rather than

integrate the URA3 gene at locations selected randomly across the genome, I chose to

systematically integrate the gene across a single chromosome.  By doing so, I did not bias

the results by integrating reporters near particular genomic features and I avoided any

complications that may result from variation in mutation rates between the chromosomes.

I chose Chromosome VI for several reasons:  it is the second smallest chromosome (270

kilobases, 40 kilobases larger than Chromosome I), it is close to being metacentric, the

gene closest to any centromere (DEG1) is on this chromosome, two of the tRNA-Tyr

ochre suppressor genes are on this chromosome, and none of the 30 known mutator

alleles are on this chromosome.  As it turned out, Chromosome VI was a convenient

choice for another reason:  it is the chromosome for which replication timing has been

most carefully studied [32, 105, 141].  I created 43 strains with the URA3 gene integrated

at a different location tiled across Chromosome VI.  Using this collection, I show that

mutation rate varies at least six-fold across the yeast genome, that this variation exists on

a length scale of 50 to 100 kilobases and that mutation rate is correlated with replication

timing as a consequence of the temporal separation of two mechanisms of DNA damage

tolerance:  error-free DNA damage tolerance and translesion synthesis.

4.2   Materials and methods

Primers, strains, and media:  The sequences of oligonucleotides used for plasmid

construction, gene replacement, verification, and sequencing are described Table 4-1.

The yeast strain GIL066 (described in Chapter 5) was used a source for the URA3 gene



Table 4-1.  Primers used in this chapter

Primer Name Sequence Purpose

URA3extF_integration 5' AGACCTGCGAGCAGGGAAACGCTCCCCTCA Strain contruction

   CAGACGCGTTGAATTGTCCCCACGCCGCGC

   ATCAAAGAAGGTTAATGTGG 3'

URA3extR_integration 5' TGTCAGTACTGATTAGAAAAACTCATCGAG Strain contruction

   CATCAAATGAAACTGCAATTTATTCATATC

   TCATTATAGAAATCATTACG 3'

U1 5' GATGTCCACGAGGTCTCT 3' PCR/Sequencing

D1 5' CGGTGTCGGTCTCGTAG 3' PCR/Sequencing

URA3intF2 5’ TGGGCAGACATTACGAATGC 3’ Sequencing

URA3intR2 5’ CAAACCGCTAACAATACCTG 3’ Sequencing

YFL063W_F 5' ACAGTTACCCTCCAATTAC 3' PCR/Sequencing

YFL063W_R 5' AGAGCATAGTGGTATGACGG 3' PCR/Sequencing

YFL011W_F 5' GGACACAAGAAATGTGTTGG 3' PCR/Sequencing

YFL011W_R 5' GTGACGCCATTAATAAAGGC 3' PCR/Sequencing

YFR030W_F 5' ATATAAGCAACAGAGGGCAG 3' PCR/Sequencing

YFR030W_R 5' AGAAATGTTCAAGACAGGTTC 3' PCR/Sequencing

YFR043C_F 5' TTCGAATTCTGAAAAGAGAGG 3' PCR/Sequencing

YFR043C_R 5' TTTTACTAGCATACTTCCCTG 3' PCR/Sequencing

YFR049W_F 5' ACCATTAAGGAGTACTTCCC 3' PCR/Sequencing

YFR049W_R 5' TCATCACTCTTCTCTCTTCC 3' PCR/Sequencing

ARS607_F5 5' CATTAGAGACAGAGAAACTATTCATTGTAC Plasmid construction

   ATTCTCCAAATGTGGTGATATAAACACTAC

   ATTCGCTAAATTACATTAGATATGCTTTGG 3'

ARS607_R5 5' GCGAATGTGATTCTATGCTTTCTAGTACCT Plasmid construction

   ACTGTGCCGAATAATGTGTAAGTCTCAAAA

   TTCTTTTCTTCCAAAGCATATCTAATGTAA 3'

ARS607_F6 5' AAGTAAATGCATCATTAGAGACAGAGAAAC 3' Plasmid construction

ARS607_R6 5' ATCGATGAATTCGCGAATGTGATTCTATGC 3' Plasmid construction

ARS607_F4 5' ACAGAGAAACTATTCATTGTACATTCTCCA Strain contruction

   AATGTGGTGATATAAACACTACATTCGCTA

   AATTACATTAATCAAAGAAGGTTAATGTGG 3'

ARS607_R7 5' TTCGGTACGACACAAAAACAACTATTGTGT Strain contruction

   CGCAGTCCATAGAAGGAGCAAGAAAAAAGA

   ATGTCTTTAAAGGCGAATGTGATTCTATGC 3'

ARS607_extF1 5' GTTTTCAGTTTGAGGGATCC 3' PCR/Sequencing

ARS607_extR1 5' GTGTCGCAGTCCATAGAAGG 3' PCR/Sequencing

REV1extF1 5' TCGCATCAACTTAAACATTGG 3' Strain contruction

REV1extR1 5' GAGTCGGCCATTCCAATACC 3' Strain contruction

REV1extF3 5' TTGGTGTTGAAATGGCGAGG 3' PCR

KanMXintF 5' CAGTTTCATTTGATGCTCGATG 3' PCR
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used in this study.  The nomenclature in this chapter is such that strains pulled from the

yeast deletion collection are named after the deleted ORF.  If the KanMX4 cassette is

replaced with the URA3 gene in these strains they are referred to by their “GL”

designation in Table 4-2.  Yeast cultures were grown in either complete synthetic media

(SC), or complete synthetic media without uracil (SC-Ura).  Fluctuation assays were

plated onto either 10 x canavanine (complete synthetic media without arginine [SC-Arg],

0.6 g/L l-canavanine, Sigma-Aldrich, St. Louis, MO), or 5FOA (SC-Ura, 1 g/L 5FOA,

Sigma-Aldrich, St. Louis, MO).  In preparation for plating several spots of mutant

cultures on each plate, the plates were over-dried by pressing a Whatman filter paper

(Grade 3, 90 mm) onto the plates using a replica plating block and allowing the filter to

remain in place for at least 30 min.  The filters remove approximately 1 mL of liquid and

plates can be used for several days after filters have been removed.

Plasmid construction:  The plasmid pGIL001 was made in order to efficiently

and accurately replace the KanMX4 cassette with the URA3 gene.  The URA3 gene was

amplified from a genomic preparation of the yeast strain GIL066 (W303 background)

using primers URA3extF_integration and URA3extR_integration.  These primers amplify

a 1.8 kilobase fragment containing the yeast URA3 promoter and coding sequence.  In

addition, these primers contain 60 base-pairs of homology to the KanMX4 cassette.  This

PCR fragment was used to transform the strain YEL020C.  Transformants were

sequenced using primers U1, D1, URA3intF2, and URA3intF3 to identify ones where no

mutations were introduced into the URA3 gene during the construction.  The

kanMX4Δ::URA3 cassette was amplified using primers U1 and D1 (the universal

upstream and downstream primers from the yeast deletion collection [139]), digested



Table 4-2.  Strains used for URA3 integration  

Strain ORF Description
† 

Position Strain ORF Description Position

GL·0 YEL020C hypothetical Chr. V GL·25 YFL003C MSH4 134516

GL·1 YFL063W hypothetical 5066 GL·26 YFL001W DEG1 147126

GL·2 YFL056C AAD6 14793 GL·27 YFR001W LOC1 149105

GL·3 YFL055W AGP3 17004 GL·28 YFR006W hypothetical 156139

GL·4 YFL054C hypothetical 20847 GL·29 YFR007W hypothetical 159293

GL·5 YFL052W hypothetical 28232 GL·30 YFR009W GCN20 162482

GL·6 YFL050C ALR2 33272 GL·31 YFR012W hypothetical 167881

GL·7 YFL049W hypothetical 36803 GL·32 YFR014C CMK1 172529

GL·8 YFL047W RGD2 40421 GL·33 YFR016C hypothetical 177034

GL·9 YFL044C YOD1 44655 GL·34 YFR017C hypothetical 182262

GL·10 YFL041W FET5 49139 GL·35 YFR019W FAB1 184490

GL·11 YFL036W RPO41 58781 GL·36 YFR021W ATG18 194800

GL·12 YFL034W uncharacterized 65475 GL·37 YFR023W PES4 199862

GL·13 YFL032W hypothetical 74870 GL·38 YFR026C hypothetical 205736

GL·14 YFL027C GYP8 80417 GL·39 YFR030W MET10 213300

GL·15 YFL025C BST1 84143 GL·40 YFR032C hypothetical 222078

GL·16 YFL023W BUD27 90984 GL·41 YFR035C hypothetical 226109

GL·17 YFL021W GAT1 95964 GL·42 YFR039C hypothetical 231999

GL·18 YFL019C hypothetical 100246 GL·43 YFR043C hypothetical 239101

GL·19 YFL015C hypothetical 106463 GL·44 YFR045W hypothetical 242129

GL·20 YFL012W hypothetical 110641 GL·45 YFR049W YMR31 248510

GL·21 YFL011W HXT10 112339 GL·46 YFR053C HXK1 253579

GL·22 YFL010C WWM1 115102 GL·47 YFR054C hypothetical 258842

GL·23 YFL007W BLM3 123474 GL·48 YFR055W hypothetical 264191

GL·24 YFL004W VTC2 131805  GL·49 YFR057W hypothetical 269048

† 
Position is the location at which the gene is first encountered moving across Chromosome VI starting at the left telomere.
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with EcoRI and BamHI and cloned into the plasmid pFA6a-KanMX4 (which was

digested with EcoRI and BamHI to remove the KanMX4 gene and expose the

corresponding restriction enzyme overhangs).  Proper construction of the plasmid was

verified by restriction digesting and sequencing.  The resulting plasmid, pGIL001, is

pFA6a-KanMX4 with a 1.8 kilobase URA3 fragment is inserted in the KanMX4 cassette.

On either side of the URA3 fragment is 300 base-pairs of homology to the KanMX4

cassette including a partial TEF promoter upstream, and some remaining KanMX4

coding sequence and the TEF terminator downstream.  The URA3 sequence of pGIL001

differs from the published genomic sequence for URA3 by eight mutations.  One

mutation (an insertion of a T to a run of seven T’s in the promoter region) was created

during the construction of this plasmid.  The other seven were present in the URA3 gene

in our laboratory W303 background; therefore, these mutations are present in the URA3

genes described in previous and subsequent chapters.  Only one of these seven mutations

is in the coding sequence and results in the substitution of serine for alanine at position

160.

Plasmid pGIL008 was constructed to facilitate deletion of ARS607.  Primers

ARS607_F5 and ARS607_R5 were annealed and extended, generating a 160 base pair

fragment corresponding to approximately 80 base pairs of homology to the regions

flanking ARS607 but devoid of the 111 base pair ARS607 sequence itself.  This fragment

was amplified using primers ARS607_F6 and ARS607_R6, which contain NsiI and EcoRI

sites, respectively.  The fragment was cut and cloned into the NsiI and EcoRI sites of

pGIL001.  The resulting plasmid, pGIL008, contains the URA3 gene followed by a 160
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base pair fragment corresponding to approximately 80 base pairs of sequence from each

sides of ARS607.

Strain construction:  Forty-nine strains were constructed each with the URA3

gene in a different location tiled across Chromosome VI and with the CAN1 gene at its

endogenous locus on Chromosome V (Figure 4-1).  Initially 49 locations along

Chromosome VI were selected for integration of the URA3 gene.  The locations were

chosen such that the average spacing between reporters was on average 3.8 kilobases

(Figure 4-2), and that the reporters were approximately evenly spaced across the length of

the chromosome.  Since the yeast deletion collection was being used for construction,

care was taken to avoid any strains where the gene replacement resulted in fitness

defects; therefore, many of the integrations were made in hypothetical ORFs (those that

have no ascribed function and were identified by their likelihood of encoding protein).

Table 4-2 reports the identity of the 49 strains selected for this experiment.

To replace the KanMX4 cassette with the URA3 gene, pGIL001 was digested

with EcoRI and BamHI, phenol chloroform extracted, ethanol precipitated, and used to

transform each of the 49 strains.  Transformants were subjected to three rounds of

screening.  First each was screened for the proper phenotype (Uracil prototrophy and

G418 sensitivity).  PCR, using primers U1 and D1, was used to verify integration in the

phenotypically correct strains.  The amplified KanMX4Δ::URA3 cassettes were then

sequenced using primers U1, D1, URA3intF2, and URA3intR2 to verify (1) that the

strains were correct based upon the barcode used in the yeast deletion project, and (2) that

no mutations were introduced in the reporter during transformation.  For five

phenotypically correct strains (GL·1, GL·21, GL·39, GL·43, and GL·45), I was unable to
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generate a PCR product using the primers U1 and D1.  For these strains I used ORF-

specific primers.  Using these primers, I was able amplify the cassette from GL·21 and

GL·39 and verify that these strains are correct.  For GL·43 and GL·45, I was again unable

to generate a PCR product; therefore, I could not verify that the URA3 gene in these

strains was properly integrated; therefore, these strains were excluded from further

analysis.  For GL·1, I was able to generate a PCR product showing that, although this

strain is phenotypically correct (meaning that URA3 is integrated within the KanMX4

reporter), the KanMX4 reporter is not at the YFL063W locus.  This strain, too, was

excluded from further analysis.

In order to manipulate replication timing, a two-step method was used in order to

create a perfect deletion the early and efficient origin, ARS607.  First the URA3 gene

followed by approximately 80 base pairs of homology to the regions flanking ARS607

(but devoid of the 111 base pair ARS607 sequence itself) was amplified using primers

ARS607_F4 and ARS607_R7.  This fragment was used to transform the strain YFR021W.

There are two ways that this fragment can integrate into the genome:  in place of ARS607

or adjacent to ARS607.  This is because one end of the fragment contains homology

upstream and downstream of ARS607.  The second step of strain construction was to

select for popout of the URA3 gene.  If the URA3 fragment integrated in place of ARS607,

the popout will result in a perfect deletion of the 111 base pair ARS607 sequence;

however, if the URA3 fragment integrated adjacent to ARS607, the popout will

reconstitute the wild-type sequence.  Following URA3 integration, 12 transformants were

grown overnight in SC-Ura and cells were plated on 5FOA to select for loss of URA3.

Deletion of ARS607 was determined by PCR using primers ARS607ext_F1 and
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ARS607ext_R1, which flank the ARS607 sequence.  Following popout of URA3 at the

deleted ARS607 locus, the URA3 gene was integrated in place of the KanMX4 cassette to

create the strain GL·36ARS607Δ.

To eliminate translesion synthesis, the rev1Δ::KanMX4 cassette was amplified

from the deletion collection using primers REV1extF1 and REV1extR1, and this fragment

was used to transform strains GL·3, GL·15, GL·24, and GL·37.  Deletion of REV1 was

verified phenotypically by assaying for UV-sensitivity and by PCR using primers

REV1intF1/REV1extR3 and KanMXintF/REV1extR3.

Fluctuation assays:  Fluctuation assays were performed essentially as described

in Chapter 2.  For each strain, 48 100 µl cultures and 48 200 µl cultures of a 1:10,000

dilution of a saturated overnight culture were established in a 96-well plate.  Twelve 100

µl cultures and 12 200 µl cultures were pooled to determine the number of cells per

culture.  The remaining 36 100 µl cultures were plated onto canavanine plates (0.6 g/L

canavanine, the same as the 10 x canavanine plates in Chapter 2) and the remaining 36

200 µl cultures were plated onto 5FOA plates.  Mutants were counted after two

(canavanine) or seven (5FOA) days of growth and mutation rates were calculated using

the Ma-Sandri-Sarkar maximum likelihood method [112].  Ninety-five percent

confidence intervals on were calculated using equations 24 and 25 from [107].

Computational analysis:  Mutation rates were calculated using the Matlab

program findMLm described in Appendix B.  Mutation rates across Chromosome VI were

compared to several other datasets to look for correlations; these include recombination

rate [38] and replication timing [105].  Perl was used to calculate GC content 500 base

pairs upstream and downstream of each reporter.  The Spearman rank correlation test was
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performed in Matlab.  The sequences of RM11-1a and YJM789 were obtained from the

Broad Institute Fungal Genome Initiative

(http://www.broad.mit.edu/annotation/fungi/fgi/) and the Stanford Genome Technology

Center (version 2, http://med.stanford.edu/sgtc/research/yjm789.html), respectively.

Genes were identified by blasting the S288c sequences against these databases.

Sequences were manually extracted and aligned to S288c.  Synonymous substitution rates

between S288c, RM11-1a, and YJM789 were calculated in Perl.  ORFs where S288c

contained the allele of one of the strains (RM11-1a or YJM789) were excluded from the

analysis.  Synonymous substitution rates between S. cerevisiae and S. paradoxus were

obtained from [53].

4.3   Mutation rate varies across Chromosome VI

Measuring mutation rate across Chromosome VI:  To determine whether

mutation rate varies across the yeast genome, I created 43 strains, each of which has the

URA3 gene integrated at a different location tiled across Chromosome VI.  In addition to

the URA3 gene, all of these strains contain the wild-type CAN1 gene at its endogenous

locus (Figure 4-1).  Fluctuation assays were performed using these 43 strains to

determine the mutation rate at the URA3 and CAN1 genes (5FOA resistance and

canavanine resistance, respectively).  Figure 4-3 shows the results from this experiment.

The mutation rate at the CAN1 locus varies between the 43 strains, but this variation is

within the range that is expected by chance:  only one point lies outside the 95%

confidence interval of the median mutation rate of the 43 strains (Figure 4-3b, shaded

region).  In contrast, the degree of mutation rate variation at the URA3 gene is greater
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than expected by chance.  There are 25 strains where the mutation rate lies outside the

95% confidence interval of the median (Figure 4-3a).  The degree of variability is better

illustrated by comparing all pairwise comparisons between mutation rates in the 43

strains (Figure 4-4).  For mutation rates at CAN1 there are only three significant pairwise

comparisons out 903 (Figure 4-4b; the plot is symmetrical across the diagonal, thus every

comparison is shown twice); however, for URA3, 262 out of the 903 pairwise

comparisons are significantly different (Figure 4-4a).  From the pairwise comparisons, it

is apparent that there are three regions of Chromosome VI, each with a length scale of 50

to 100 kilobases.  Within a region, mutation rate is not significantly different, but the

region as a whole is significantly different from adjacent regions.  The three regions on

Chromosome VI correspond to a region of high mutation rate on the left arm of the

chromosome, a region of low mutation rate extending across the centromere, and a region

of median mutation rate on the right arm of the chromosome.

Identification of outliers:  The original strain construction for this experiment

involved integrating URA3 at 49 locations across Chromosome VI.  Fluctuation assays

were performed on all 49 strains; however, six of the strains were eliminated from further

analysis.  Difficulties with three of the strains were apparent during construction.  For

two strains (GL·43 and GL·45), I was unable to generate a PCR product using either the

universal primers or ORF-specific primers, both of which were able to generate PCR

products in a wild-type strain.  Therefore, it is possible that a chromosomal

rearrangement occurred in these strains.  Interestingly, these two strains have the lowest

mutation rates of the 49 measured strains (0.5 x 10-8 and 0.7 x 10-8, respectively).  For the

strain GL·1, ORF-specific PCR shows that in the strain pulled from the deletion
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collection, the KanMX4 is not integrated at the subtelomeric YFL063W locus.

Phenotypically, I show that URA3 successfully replaced the KanMX4 cassette; however,

since this strain is one where the universal primers fail to produce a PCR product, I am

unable to determine the location of the KanMX4Δ::URA3 cassette.  Interestingly, this

strain shows the highest mutation rate (46.8 x10-8, 5.3-fold higher than the second highest

strain, which is also an outlier, described below), as one might expect for a subtelomeric

reporter, which can be inactivated by silencing as well as mutation.  Given the similarity

of yeast telomeres, it is possible that this reporter is located in a subtelomeric region on a

different chromosome.

In addition to the three outliers detected during strain construction, three outliers

were detected during the experiment.  As mentioned above, the strain with the second

highest mutation rate at URA3 (8.8 x 10-8) is also an outlier.  This is because this strain

(GL·11) also has an elevated mutation rate at CAN1 (4.5 x 10-7, 4.8-fold higher than the

median), indicating that this strain has a globally elevated mutation rate.  None of the 30

known mutator alleles are found on Chromosome VI and there is no reason to suspect

that the gene deleted during construction of the strain (RPO41, encoding a mitochondrial

RNA polymerase) is a mutator allele.  Given that the yeast genome has been screened for

mutator alleles [49], one of this strength is unlikely to have gone undetected; therefore, it

is likely that this strain carries a spontaneous, transformation-induced mutation in one of

the 30 genes that are known to be capable of giving rise to mutators.  Two strains (GL·31

and GL·35) were eliminated from further analysis because they harbor a mutation causing

them to grow differently on 5FOA than the rest of the strains.  Both strains show a high

mutation rate at URA3.  This phenotype is discussed further in Appendix A.
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4.4   Mutation rate is correlated with replication timing

In order to determine the cause of mutation rate variation across Chromosome VI,

I sought to determine if mutation rate is correlated to any other features of the

chromosome.  One possibility, which must be ruled out is that this variation is not

position-dependent, but rather strain-dependent and that I do not detect this variation in

the CAN1 reporter because it may be less sensitive to this variation than the URA3

reporter.  This situation could arise if, for instance, the URA3 gene contained mutational

hotspots, which were missing (or underrepresented) in CAN1, and this experiment was

really detecting strain-to-strain variation for one particular type of mutation.  This

situation is unlikely since both URA3 and CAN1 are large targets for mutation and do not

contain any significant mutational hotspots as shown in Chapter 3; therefore, there is no

expectation that one reporter would be more sensitive to variation.  If such a mechanism

were acting in this experiment one would expect that this strain-to-strain variation would

act in the same direction for both reporters, although the magnitude of the responses

would be different.  In other words, one would expect the mutation rates at CAN1 and

URA3 to be correlated.  I find no correlation between mutation rates in the two reporters

(Figure 4-5a, p = 0.07, Spearman); therefore, the mutation rate variation I see at the

URA3 gene in these strains is likely due to their position on Chromosome VI.

To look for features of the chromosome that are correlated with mutation rate, one

should start by looking for properties of the genome that vary on a similar length scale

(50 to 100 kilobases).  GC content is one such feature [90, 116].  The average GC content

for the 500 base-pairs upstream and downstream of each gene does not correlate
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with its mutation rate (Figure 4-5b, p = 0.32, Spearman).  Recombination rate is another

feature that may influence mutation rate.  Although the data set for recombination rate

was generated in meiosis [38], and the strains in this experiment were growing

mitotically, the same sequences that stimulate recombination may also influence mutation

rate.  There is a weak negative correlation between recombination rates and mutation

rates on Chromosome VI (Figure 4-5c, p = 0.04, Spearman).  Another feature of the

chromosome, which varies on a length scale of approximately 50 to 100 kilobases is

replication timing.  In yeast, replication of the genome is performed in a spatially and

temporarily coordinated fashion, which is largely reproducible from cell cycle to cell

cycle.  The complete replication profile of the yeast genome has been determined [105].

There is a strong correlation between the time at which a region of the chromosome is

replicated and its mutation rate (Figure 4-5d, p < 10-5, Spearman).  This correlation is

such that early replicating regions have a low mutation rate and late replicating regions

have a high mutation rate.  Figure 4-6 shows a comparison of the replication profile and

the mutation profile of Chromosome VI.

Chromosome VI contains 12 autonomous replicating sequences (ARSs) capable

of initiating replication, each identified by the presence of a conserved ARS consensus

sequence and by their ability to act as a replication origin on a plasmid (Table 4-3).  In

the genome, an ARS can constitute an origin of replication; the terms ARS and origin are

often used interchangeably (ARS is a structural/sequence description, whereas origin is a

functional description).  Although Chromosome VI contains 12 ARS sequences, there are

only seven prominent origins of replication (origins that fire in more than one quarter of

cell cycles, Table 4-3).  Origins are classified by two measures:  their efficiency (the
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Figure 4-6.  Comparison of the replication timing and mutation rate.  Replication profile from 
Raghuraman et al. (2001).  Both axes are linear and the range of mutation rates and replication 
times is the same as in Figure 4-5d.
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Table 4-3.  Autonomously replicating sequences on Chromosome VI

ARS Position (kb)
† 

Timing (minutes) Efficiency

600 5 49.7 inefficient

601/602 33 43.1 32%

603 69 36.4 50%

603.5 119 23.2 67%

604 128 24.2 inefficient

605 136 25.9 27%

606 168 18.6 74%

607 199 13.4 85%

608 216 25.2 10%

609 256 43.5 37%

610 270 49.2 inefficient

Positions and efficiencies from the Saccharomyces Genome Database
(http://www.yeastgenome.org).  Position is the distance from the left telomere.  Efficiency is the
fraction of cell divisions in which the origin fires.

† 
Replicaiton timing from Raghuraman et al. (2001).  Timing indicates minutes since release from

an α factor arrest.

ARS601 and ARS602 overlap and comprise one origin

ARS600 and ARS610 are subtelomeric
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number of cell divisions where the origin fires) and their timing of firing during S-phase.

Based upon their timing, origins are classified as either early or late.  Although the times

at which origins fire lie on a continuum, early and late origins are distinct in terms of the

proteins associated with pre-origin complex and the genetic requirements for firing [111].

During the design of this experiment I did not anticipate that mutation rate would

be correlated with replication timing.  Since the strains were constructed such that URA3

was integrated in place of an ORF, by chance three of these ORF deletions remove

known yeast origins.  ARS605, ARS606, and ARS608 are deleted in strains GL·25, GL·31,

and GL·39, respectively.  Disruption of ARS605 should have a small effect due to its

close proximity to earlier firing ARS603.5.  In addition, disruption of ARS608 should

have a negligible effect since it fires in only 10% of cell cycles.  However, disruption of

ARS606 should affect the timing of replication since it is an early and efficient origin.

Strain GL·31 was not used in the analysis because its growth on 5FOA is different from

the other strains (Appendix A).  Interestingly, this strain had a high mutation rate (6.5 x

10-8) compared to other URA3 reporters in the same region, which may be partly

attributable to disruption of ARS606.

To test if disruption of an origin of replication can increase the local mutation rate

in an early replicating/low mutation rate region, the earliest and most efficient origin,

ARS607, was deleted in strain GL·36, where the URA3 gene is located 3 kilobases away

from the origin.  Deletion of ARS607 increased the mutation rate at URA3 by 30% (from

2.21 x 10-7 to 2.88 x 10-7) without increasing the mutation rate at CAN1 (0.81 x 10-7 in

GL·36 and 0.76 x 10-7 in GL·36ARS607Δ).  This slight increase in mutation rate is not

significant given the error in fluctuation assays.  It is possible that deletion of ARS607 did
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not significantly delay replication timing in the region.  The early but inefficient ARS608

is 17 kilobases away.  In the absence of ARS607, ARS608 may fire in more cell cycles

and allow for early replication of this region.

4.5   Model for replication timing and mutation rate

The correlation between replication timing and mutation rate can be understood in

terms of a model for how cells deal with damaged bases during replication [136].  The

genome is subject to numerous types of DNA damage including alkylation, ionizing

radiation, UV radiation, and oxidative damage, resulting in a variety of damaged bases

[31].  Prior to S-phase, damaged bases are corrected by base excision repair and

nucleotide excision repair; however, some damaged bases escape repair and interfere

with DNA replication.  The replicative DNA polymerases (Polδ and Polε in yeast) have a

high processivity and a low error rate; however, they are unable to efficiently incorporate

opposite a non-canonical base [36].  Therefore, when a replication fork encounters a

lesion, the leading and lagging strands decouple and replication resumes downstream of

the lesion [74].  The result is a single-stranded region (including the damaged base)

behind the replication fork, known as a daughter-strand gap.  There are two ways a cell

can fill in this gap:  an error-prone method using a translesion polymerase to copy the

damaged template or an error-free method using the newly formed sister strand as a

template (template switching).  Error-free repair can occur as soon as the replication fork

has passed and the homologous sequence is available.  Recent work suggests that

translesion synthesis is used only as a last-ditch effort to fill in these gaps and cannot

occur until the end of S-phase (Figure 4-7) [136].  Therefore, regions of the genome that



template switching translesion synthesis

Figure 4-7.  A model for error-free DNA damage tolerance and translesion synthesis.  Damaged 
bases encountered by the replicative polymerase during S-phase result in single-strand gaps 
behind the replication fork.  There are two ways a cell can fill in these gaps:  a error-free 
approach (such as template switching) using the newly formed sister strand as a template, or 
error-prone translesion synthesis.  Error-free DNA damage tolerance can occur as soon as the 
replication fork has passed and the sister sequence is available.  Recent evidence suggests that 
translesion synthesis does not occur until the end of S-phase and into Mitosis (Waters and 
Walker 2006).  Therefore, regions replicated early are more likely to undergo error-free repair; 
whereas, regions replicated late are more likely to be subjected to translesion synthesis.  This 
figure is adapted from Waters and Walker (2006).

Replication MitosisG1

Error-free repair Translesion synthesis
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are replicated early in S-phase have longer to undergo error-free repair to replicate past

lesions, whereas regions replicated late are more likely to require translesion synthesis.

It should be noted that the model of temporal separation of error-free repair and

translesion synthesis is in contrast with earlier models where translesion synthesis occurs

at the replication fork.  It was originally thought that when a replicative polymerase

encounters a lesion, the replication fork stalls leading to the dissociation of the replicative

polymerase.  A translesion synthesis polymerase is then used to replicate across the

lesion, after which it will dissociate, due to its low processivity, and the replicative

polymerase will again take over.  Several observations contradict the model of translesion

synthesis acting at the replication fork.  It has been observed that in a UV-irradiated

excision repair-deficient strain, single stranded regions are generated behind the

replication fork [74].  The accumulation of single stranded regions is increased in strains

deficient in translesion synthesis, homologous recombination, or the DNA damage

checkpoint [74].  Disruption of translesion synthesis or checkpoint function only

increases single stranded regions late in S-phase; whereas, loss of homologous

recombination increases single stranded regions throughout S-phase [74].  In order to test

the model that translesion synthesis is operating late in S-phase, expression levels of the

three yeast translesion DNA polymerases were monitored during cell cycle progression

[136].  Interestingly, Rev1, a translesion DNA polymerase essential for translesion

synthesis, is not expressed until late in S-phase and into mitosis, after most of the DNA

has been replicated [136].  These results support the model that translesion synthesis is an

option of last resort employed to repair daughter-strand gaps in the genome.  This model,

in turn, provides an explanation for the observation that early replicating regions have a
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low mutation rate and late replication regions have a high mutation rate:  early replicating

regions are more likely to use an error-free mechanism (template switching) to tolerate

lesions, whereas late replicating regions are more likely to be subjected to the mutagenic

process of translesion synthesis.

To test this model, I deleted the REV1 gene from four strains (two early

replicating/low mutation rate and two late replicating/elevated mutation rate).  Strains

GL·3, GL·15, GL·24, and GL·37 are replicated at 44.5, 43.8, 26.5, and 13.7 minutes,

respectively.  Disruption of translesion synthesis results in a great reduction of mutation

rate in the late replicating/high mutation rate region (Figure 4-8).  For early replicating

regions with low mutation rates, there is no significant effect of REV1 deletion (Figure 4-

8).

4.6   Discussion

In relation to previous work:  The correlation between replication timing and

mutation rate in this work raises the question why this relationship was not identified in

previous studies.  Two earlier experiments show that mutation rate varies across the

genome for ochre suppressor mutations and frameshifts at microsatellite repeats.  In the

latter experiment the 16-fold difference in mutation rates in a wild-type strain is reduced

to two-fold in an msh2∆ strain, indicating that the observed variation is due to differential

ability of mismatch repair across the genome [46].  The variation in mutation rate for the

tRNA suppressor mutations can also be explained as variation in the effectiveness of

mismatch repair.  Much of the observed variation can be attributed to the orientation of



Figure 4-8.  Mutation rate variation is dependent upon translesion synthesis.  To test the hypoth-
esis that the correlation between replication time and mutation rate is due to the temporal separa-
tion of error-free repair and translesion synthesis (Figure 4-7), REV1 (which encodes a transle-
sion polymerase essential for translesion synthesis) was deleted in four strains that show varia-
tion in mutation rate and replication timing.  Strains GL·3, GL·15, GL·24, and GL·37 are replicated 
at 44.5, 43.8, 26.5, and 13.7 minutes, respectively.  Disruption of translesion synthesis results in a 
great reduction of mutation rate in the late replicating/high mutation rate region.  For early repli-
cating regions with low mutation rates, there is no significant effect of REV1 deletion.
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the tRNA gene with respect to the nearest origin of replication.  The three tRNAs with

the lowest mutation frequencies are transcribed in the direction of fork progression;

whereas the other five tRNAs are transcribed in the opposite direction [50].  Ochre

suppressors arise by a GC to TA transversion in the anticodon of tRNA-Tyr.  Therefore,

this could by either incorporation of an adenine opposite guanine on one strand or by the

incorporation of a thymine opposite cytosine on the opposite strand.  A common type

oxidative DNA damage is 8-oxo-guanine, which can pair with adenine causing a GC to

TA transversion [31].  Mismatch repair is more efficient at correcting 8-oxo-guanine-

adenine base pairs on the lagging strand than the leading strand, possibly due to the

presence of more nicks on the lagging strand [102].  The tRNA-Tyr alleles with low

mutation rates to ochre suppressors are oriented such that adenine incorporation opposite

8-oxo-guanine will occur on the lagging strand, whereas, for the tRNA-Tyr alleles with

high mutation rates this will occur on leading strand, and have a greater potential of

escaping mismatch repair.

This result shows that orientation with respect to the replication fork can have an

impact on mutation rate for a single base-pair substitution; however, this is unlikely to

impact mutation rates in my experiment, since I am detecting loss of function mutations

over an entire gene, which will average out these small-scale effects.  Classifying the

strains based upon the orientation of URA3 with respect to the most likely direction of

fork movement does not reveal an orientation bias in my results (p > 0.05, Wilcoxon

rank-sum).  Additionally, orientation relative to the replication fork is not responsible for

variation of mutation rate observed for microsatellite frameshift mutations [46].
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In these three studies where mutation rate variation was observed across the

genome, it is likely that they each has a different underlying mechanism.  Variation in the

rate of frameshift mutations is largely due to variation in the efficiency of mismatch

repair across the genome, although the genomic feature responsible for this variation is

unknown.  Variation in the rate of tRNA-Tyr ochre suppressor mutations is associated

with the orientation of the gene with respect to the nearest replication origin and may

result from differential efficiencies of mismatch repair on the leading and lagging strands.

In the experiment described in this chapter, mutation rate variation is shown to correlate

with replication timing and may result from the temporal separation of error-free repair

(template switching) and translesion synthesis.  Therefore, the replication profile can

impact mutation rate in two ways, by the direction of replication fork movement and the

timing of replication.  Although the mechanism for variation in microsatellite mutations

is unknown, neither replication timing nor orientation can account for it, suggesting that

other aspects of genome structure can influence the mutation rate.

Biological significance:  An open question in the field of DNA repair is whether

translesion synthesis occurs at or behind the replication fork.  Based on the observation

that the translesion polymerase, Rev1, is not expressed until late S-phase and into

Mitosis, it has been proposed that translesion synthesis is separated temporally from

error-free methods of DNA damage tolerance such as template switching [136].  In order

to minimize mutation rate, it is advantageous to use recombination-based mechanisms of

damage tolerance as long as the sister strand is available and employ error-prone

translesion synthesis only after the sister chromatids have separated.  The observation

that early replicating regions have a low mutation rate and late replicating regions have a
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high mutation rate supports this model since early replicating regions will have more time

to undergo error-free repair and late replicating regions are more likely to subjected to

translesion synthesis.

To determine if this mutation rate variation influences the synonymous

substitution rate, I compared the measured mutation rates with the synonymous

substitution rate between S. cerevisiae and S. paradoxus and found no correlation (Figure

4-9a, p = 0.54, Spearman).  This is consistent with previous work showing that the

synonymous substitution rate between S. cerevisiae and S. paradoxus does not vary

across the genome [10].  One explanation for this is that replication timing may change

rapidly on an evolutionary time scale.  A survey of nine origins on Chromosome VI

shows strain-to-strain variation in the efficiency of at least one origin within S. cerevisiae

[141].  To examine the synonymous substitution rate over a shorter evolutionary distance,

I calculated the synonymous substitution rate between S288c and two other S. cerevisiae

strains, RM11-1a and YJM789.  Figure 4-9b shows that the synonymous substitution

within S. cerevisiae is correlated to mutation rate (p = 0.02, Spearman).

Although replication timing may change rapidly on an evolutionary time scale,

budding yeast centromeres are consistently replicated early and telomeres are consistently

replicated late [105].  It has been observed that essential genes tend to be located near

centromeres [130].  This positioning may have been selected for in order to keep essential

genes in regions of low mutation rate.  Telomeres are sites of rapid genomic change [53].

In Plasmodium falciparum, genes families involved in generating antigenic variation are

located at the telomeres [35].  Placement of these genes in late replicating regions

increases the likelihood that they will be subjected to mutagenic translesion synthesis.
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Figure 4-9.  Synonymous substitution rate and mutation rate.  The synonymous substitution rate 
between within S. cerevisiae, but not between S. cerevisiae and S. pradoxus, is correlated with 
mutation rate.  The sequences of RM11-1a and YJM789 were obtained from the Broad Institute 
Fungal Genome Initiative (http://www.broad.mit.edu/annotation/fungi/fgi/) and the Stanford 
Genome Technology Center (version 2, http://med.stanford.edu/sgtc/research/yjm789.html), 
respectively.  ORFs where S288c contains the allele one of the strains (RM11-1a or YJM789) 
were excluded from the analysis.  Synonymous substitution rates between S. cerevisiae and S. 

paradoxus were obtained from Kellis et al. (2003).  p-values were determined using the Spear-
man rank correlation test.
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In this chapter, I have shown that mutation rate varies across the yeast genome

and that this variation is correlated to replication timing.  This observation supports the

model of temporal separation of two mechanisms of DNA damage tolerance (error-free

DNA damage tolerance and translesion synthesis).  This variation affects the synonymous

substitution rate within S. cerevisiae; however, since replication timing may change

rapidly on an evolutionary time scale, this effect is not detected between S. cerevisiae and

S. paradoxus.  Mutation rate variation within the genome may put selective pressure on

essential genes to localize to regions, such as centromeres, which consistently replicate

early and on rapidly evolving genes to localize to regions such as telomeres, which

consistently replicate late.
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Abstract

In this chapter, I examine three possible sources of mutation rate variation:  the

length of the cell cycle, environment, and strain background.  Several studies in bacteria

and yeast suggest that the per-genome per-generation mutation rate is increased under

stress.  One possible explanation for this is that if a fraction of mutations occur at a

constant rate per unit time, increasing the duration of the cell cycle would increase the

mutation rate per genome per generation.  Here I show the per-genome per-generation

mutation rate is robust to variation in the cell cycle.  One exception to this rule is that

mutation rate is elevated under osmotic stress.  This can be explained by the hypothesis

that salt directly damages DNA by inducing strand breaks.  In the last section of this

chapter, I present evidence that a mutator allele has fixed during propagation of a

common laboratory strain.

5.1   Materials and methods

Strains:  The strains used in this study are described in Table 5-1.  W303 strains

originating from our lab are referred to as “derived,” whereas strains constructed from the

original W303-1a strain (obtained from R. Rothstein) are referred to as “ancestral.”

Fluctuation assays:  For Sections 5.3 and 5.4, fluctuation assays were performed

essentially as described in Chapter 2.  Each assay was performed in 96-well plates, where

24 cultures were used to determine the cells per culture and 72 cultures were plated to

determine the expected number of mutation events per culture, m.  The canavanine plates

used in this chapter are equivalent to the 1 x canavanine plates described in Chapter 2 (60

mg/L canavanine).  Mutation rates were calculated using the Ma-Sandri-Sarkar maximum



Table 5-1.  Strains used in Chapter 5

Strain Genotype

JYL338 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 Matα)

JYL516 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 msh2Δ::KanMX

hmlαΔ::LEU2 Matα)

GIL066 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2

hmlαΔ::LEU2 Mata)

GIL074 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2

hog1Δ::KanMX Mata)

GIL076 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2

rad52Δ::KanMX Mata)

GIL087 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1 Mata)

GIL102 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2

hmlαΔ::LEU2 Matα)

GIL104 W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 Mata)

GIL051 S288c (URA3 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 Mata)

BY4741 S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 Mata)

YEL020C S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YEL020CΔ::KanMX Mata)

YML032C S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YML032C(rad52)Δ::KanMX Mata)

YPR032W S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YPR032W(sro7)Δ::KanMX Mata)
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likelihood method [112].  Ninety-five percent confidence intervals on mutation rates were

calculated using equations 24 and 25 from [107].  In Section 5.2, a modified fluctuation

assay was used to determine mutation rate.  This method (the selection/counterselection

method) is used to measure mutation rate at URA3 and takes advantage of the fact that

one can select both for and against this locus.  Briefly a small number of cultures (3 to

10) are grown in synthetic media lacking uracil (SC-Ura) and plated onto 5FOA to

determine the frequency or ura3 mutants.  The logic behind this assay is that ura3

mutants will arise in the culture during the growth period, but be unable to divide until

plated onto 5FOA, thus eliminating jackpot cultures associated with the fluctuation assay.

The advantage is that one can use fewer cultures (possibly a single culture) to determine

mutation rates.  This assay is complicated because uracil auxotrophs eventually die in

SC-Ura media and jackpots, due to 5FOA resistance mutations at other loci, can still

occur (Appendix A).

5.2   Mutations occur at a constant rate per cell division

It has been proposed that mutation rate is elevated under stress and that this is an

adaptive response [29, 108], although this conclusion remains controversial [109].  One

explanation for this observation could be that mutations occur at a constant rate per unit

time; therefore, when nutrient limitation shows proliferation, the per-generation mutation

rate is elevated due to the lengthening of the cell cycle.  Previous work in bacteria using

tryptophan-limited chemostat cultures suggests shows that mutations indeed do

accumulate at a constant rate per unit time [58].  However, this is complicated by the

observation that under glucose-limitation mutations accumulate at a constant rate per cell
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division [58].  In order to determine if the mutation rate in yeast growing in rich media is

constant per unit time or constant per cell division, mutation rates were measured in

cultures whose growth rate was slowed by varying concentrations of NaCl, by varying

concentrations of the protein synthesis inhibitor, cycloheximide, and using synthetic

media with glycerol as the sole carbon source.  The results in Figure 5-1 shows that the

mutation rate is robust to changes in the duration of the cell cycle caused by low

concentrations of cycloheximide or alternative carbon sources out to a doubling time of

650 minutes (the increase in mutation rate due to high salt concentration will be dealt

with in the next section).  This result is important because it indicates that the mutation

rate per generation is constant, consistent with the idea that the majority of mutations

occur during S-phase.  Since the timing of replication is tightly regulated and highly

synchronous, it is likely that slowing the cell cycle does not increase the duration of S-

phase; rather, the G1-phase of the cell cycle is extended under these perturbations [45].

This result justifies expressing the mutation rate per cell division, rather than per unit

time.

5.3   Elevation of mutation rate under osmotic stress

Evidence for elevation of mutation rate:  When determining how the duration of

the cell cycle effects mutation rate, I noticed that the per-genome per-generation mutation

rate increased in high NaCl concentrations (Figure 5-1).  It can be ruled out that this

increase is due simply to the slowing of the cell cycle and the accumulation of mutations

occurring at a constant rate per unit time.  First, slowing the cell cycle by other means

fails to increase the mutation rate.  In addition, the slope of the increase in mutation rate
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Figure 5-1.  Mutations occur at a constant rate per cell division.  The selection/counterselection 
method was used to determine mutation frequencies under a variety of conditions that slow the 
cell cycle.  Slowing the cell cycle by altering the carbon source of using low doses of cyclohexi-
mide does not increase the mutation frequency; however, mutation rate increases with increasing 
NaCl concentrations.  Each data point is a single culture of JYL338.  Four cultures (1 “no stress,” 
and 3 “cycloheximide”) had a very high mutation frequncy compared to the other replicates and 
were omitted from the analysis.  NaCl concentration varied from 0.25 to 1 M.  Cycloheximide 
concentration ranged from 0.025 to 0.2 g/ml.  Three “glycerol” samples were deprived of lysine, 
further increasing doubling time.



103

is greater than one, indicating that doubling the length of the cell cycle by increasing the

salt concentration more than doubles the mutation rate.  This would argue that the effect

of high salt on mutation rate cannot be solely due to its effect on growth rate.

An increase in mutation rate is also observed in high sorbitol and high glucose

concentrations suggesting that this is an effect of osmotic, and not ionic, stress (Figure 5-

2a).  In addition, this effect is also observed at the CAN1 locus, showing that this increase

in mutation rate is not specific to mutations at URA3 (Figure 5-2b).  Osmotic stress

cannot be inhibiting some aspect of mismatch repair, since the strain used in Figure 5-2 is

msh2Δ and thus defective for mismatch repair.

Strand breakage model for osmotic stress:  One possible explanation for the

observed increase in mutation rate in response to osmotic stress is that cells may

upregulate their mutation rate as a stress response.  If this were a general stress response,

one might expect the response to be diminished in cells adapted to high salt.  A diploid

strain adapted to growth in high salt [131] was sporulated and the

selection/counterselection assay was performed to determine the mutation rate in the

presence and absence of 1 M NaCl for two haploid URA3 spores.  Salt-adapted strains

display the same increase in mutation rate as non-adapted strains indicating that either the

increase in mutation rate is not due to a stress-response or that these strains have not been

sufficiently adapted to high salt such that the osmotic stress response is alleviated (data

not shown).

Another possible explanation for this observation is that high salt may be

genotoxic either by interfering with some aspect of maintaining fidelity or by directly

damaging DNA.  It has been proposed that osmotic stress is mutagenic in mammalian
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cells [7, 88] and yeast [100].  Although the molecular basis for this mutagenic effect is

unknown, evidence suggests that high osmotic stress inhibits normal DNA repair and

checkpoint function and induces double strand breaks [19, 20, 59].  Double strand breaks

cause an elevation in the frequency of base pair substitutions [137].  In order to determine

if high salt increases base pair substitutions, 48, 24, 21, 24, and 24 independent ura3 loss-

of-function alleles were sequenced from wild-type, wild-type + 1 M NaCl, gamma-

irradiated wild-type (370 Gy in benomyl/nocodazol arrested cells), msh2Δ, and msh2Δ +

1 M NaCl cultures.  Table 5-2 shows that high salt elevates the fraction of base-pair

substitutions in the mutational spectra under osmotic stress in both wild-type and msh2Δ

strains, a phenomenon that has been correlated with double strand break repair in

previous studies; however, in contrast to previous work, the fraction of base-pair

substitutions remained the same following gamma-irradiation.

Strains deficient for Rad52 are sensitive to double strand breaks.  Thus the

hypothesis that high osmotic strength leads to double strand breaks predicts that a rad52Δ

strain would be hypersensitive to osmotic stress.  The salt-sensitivity experiment was

carried out in both S288c and W303 backgrounds (Figures 5-3).  Strains were compared

to wild type and a known osmo-sensitive strain (sro7Δ or hog1Δ).  For each experiment,

serial dilutions of each strain were spotted onto either YPD plates or YPD + 1 M NaCl

plates.  For both strain backgrounds, the rad52Δ strain showed intermediate growth on

high salt, whereas all three strains grew nearly equally well on rich media (the W303

rad52Δ strain shows a slight defect on YPD compared to wild-type and hog1Δ strains).

Next, the rad52Δ strain (W303 background) was assayed for mutation rate in the



Table 5-2.  Mutational spectra     

MSH2 MSH2 + NaCl
MSH2 +
Gamma

msh2Δ msh2Δ + NaCl

Base-pair substitutions 32/48 20/24 18/27 11/24 12/22

Transitions 11/48 6/24 7/27 8/24 7/22

Transversions 21/48 14/24 11/27 3/24 5/22

Missense 21/48 11/24 7/27 11/24 9/22

Nonsense
1

11/48 9/24 8/27 — 3/22

Insertions/Deletions 13/48 4/24 7/27 13/24 9/22

Poly A/T 1/48 — — 12/24 9/22

Non-poly A/T 12/48 3/24 7/27 1/24 —

Insertions 1/48 — — 4/24 1/22

Deletions 12/48 3/24 7/27 9/24 8/22

Other 3/48 — 2/27 — 1/22

Double-mutations 2/48 — 2/27 — —

Duplications 1/48 — — — —

Unknown
2

— — — — 1/22

       

Strains used in this study:  JYL338 (MSH2) and JYL516 (msh2Δ)

1
 Includes start codon mutations

2
 Wild-type URA3 and FUR1
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Figure 5-3.  Salt sensitivity of a rad52  strain.  Salt sensitivity was assayed for wild type, rad52 , 
and known salt sensitive strains (sro7  or hog1 ) in both S288c and W303 backgrounds.  Dupli-
cate serial dilutions were spotted onto rich media or rich media with 1 M NaCl.  The strains used 
in this experiment are YEL020C (S288c, wild type), YML032C (S288c, rad52 ), YPR032W 
(S288c, sro7 ), GIL066 (W303, wild type), GIL076 (W303, rad52 ), and GIL074 (W303, hog1 ).
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presence and absence of 1 M NaCl.  This strain shows less of an increase in mutation rate

in high salt (3.51 x 10-7 in 2 x SC versus 4.80 x 10-7 in 2 x SC + 1 M NaCl).

The above results:  an increase in base-pair substitutions in high salt, salt

sensitivity of rad52Δ strains, and a diminished elevation of mutation rate in a rad52Δ

strain, are consistent with the hypothesis that high salt increases double strand breaks.

The elevation of mutation rate in high salt seen in the rad52Δ strain could be due to

production of single strand breaks, which are processed in a Rad52-independent manner.

5.4   Fixation of a mutator allele in a laboratory strain

Evidence for a mutator phenotype:  An early observation in my studies of

mutation rate is that the mutation rate of mismatch-repair proficient strains in our

laboratory (JYL338, GIL066, GIL074, GIL076, and GIL102 in Table 5-1) is higher than

published rates, whereas the mutation rate in our mismatch-repair deficient strain

(JYL516) is consistent with published rates [142].  These strains share common origin

suggesting that our strains contain a mutator allele conferring a five-fold elevation of

mutation rate and that this mutator allele is epistatic with the msh2 deletion since

elimination of mismatch repair in our background only confers a 20-fold elevation of

mutation rate compared to the 100-fold elevation observed in other strains [142].  This

raises the possibility that our strains contain defect in mismatch repair.  Given that

elimination of MSH2 has a profound effect on the mutational spectra (enriching for

insertion/deletions at polynucleotide runs, compared to our wild-type strain, Table 5-2) it

is unlikely that our strains have lost the function of the MSH2/MSH3 complex, which is

primarily responsible for correcting these slippage events [60].  However, MSH2 also
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functions as a heterodimer with MSH6, which is primarily responsible for correcting

base-pair substitutions [60].  Disruption of MSH6 in our wild-type background has little

effect on the papillation frequency or on the ability of strains to compete with wild type

in laboratory competition experiments (D. Thompson, unpublished).  In addition, msh6

mutants are reported to have a 10-fold increase in mutation rate [49].  Sequencing of the

MSH6 gene from our strain background revealed two nonsynonymous substitutions in

conserved regions of the protein compared to the sequenced S288c strain.

Segregation of the mutator phenotype:  To determine the number of genes

involved in the mutator phenotype, our W303 strain (JYL338) was crossed to an S288c

strain (GIL051) with a 10-fold lower in mutaion rate.  Ten tetrads were dissected and

fluctuation assays were performed for the 40 spores (Figure 5-4).  The cross shows a

large amount of variation in mutation rate, which may be due to differences in the strain

backgrounds (this cross also shows a large amount of variation in the saturation densities

of the cultures, data not shown).  Looking for a natural break in the data, I designate

mutation rates greater than 1.2 x 10-7 as “elevated.”  By looking at the segregation within

each tetrad there are five 2:2, three 3:1, and two 4:0 segregants of low and elevated

mutation rate, respectively.  This is inconsistent with one locus (since all tetrads are

expected to show a 2:2 segregation) and with three loci (p < 0.001, Chi-square).  The data

are unable to exclude the possibility of two major-effect loci (p > 0.15, Chi-square).  In

addition, the fraction of spores with high mutation rate (13/40) is consistent with the

expected fraction given two loci required for this phenotype (10/40).  To determine if the

MSH6 gene contributes to the 10-fold elevation in mutation rate in our laboratory strains,

primers specific to the S288c and W303 alleles of were designed and used to determine if
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Figure 5-4.  Mutation rate variation between common laboratory strains.  A complex segregation 
pattern of mutation rate is observed from a cross between W303 and S288c.  Ten tetrads were 
dissected from a cross between JYL338 (W303) and GIL051 (S288c).  Fluctuation assays were 
performed to determine the mutation rate of each of the 40 spores and PCR genotyping was 
used to determine the identity of the MSH6 allele (which varies by two synonymous substitutions 
between the parental strains).  Mutation is unlinked to the MSH6 allele in this cross.  The data 
are inconsistent with locus (since all tetrads are expected to show 2:2 segregation) and with 
three loci (p < 0.001, Chi-square).  The data cannot rule out the possibility two major effect loci (p 
> 0.15, Chi-square).
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the MSH6 alleles segregate with mutation rate in this cross.  It is clear from Figure 5-4

that the MSH6 allele does not contribute to the different mutation rates between these

strains.

In order to determine if the elevation of mutation rate is specific to our laboratory

strain or is present in all W303 strains, the original W303-1a strain was obtained

(courtesy of R. Rothstein).  This strain was transformed with the wild-type URA3 gene to

generate the strain GIL087.  Figure 5-5a shows that the mutator allele is specific to our

laboratory strain background.  A cross between our derived W303 background and the

ancestral W303 background shows that the mutator allele segregates 2:2 (Figures 5-5b,

c), suggesting that the mutation rate variation between the ancestral and derived W303

strains is due to a single mutation.

The results from these two crosses imply that the ancestral W303 contains one of

the two mutations seen segregating in the cross between the derived W303 strain and

S288c.  The mutation rate of the ancestral strain in Figure 5-5a is 1.6-fold higher than

S288c.  Although this is within the error of the fluctuation assay, it is seen consistently

from experiment to experiment.  As for the mutations responsible for the difference

between the ancestral and derived strains of W303, MSH6 has been ruled out since both

W303 strains contain the same allele and this allele does not segregate with mutation rate

in the derived W303/S288c cross.  Since the mutation is epistatic with msh2Δ, it is

possible that this mutation is itself a partial loss-of-function allele of MSH2; however,

sequencing of MSH2 revealed that W303 and S288c contain the same allele.  It remains

possible that this mutation is in another component of mismatch repair.
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Figure 5-5.  A derived laboratory strain of W303 contains a single mutator allele.  (A) The W303 

strains in our laboratory (“derived”) have an elevated mutation rate compared to S288c and the 

ancestral W303 strain (obtained from R. Rothstein).  Strains used in this experiment are JYL338 

(W303, derived), GIL051 (S288c), and GIL087 (W303, ancestral).  (B) Ten random segregants 

from a cross between GIL087 and a derived strain (GIL102) show a segregation pattern indica-

tive of a single mutation effecting mutation rate.  (C) Fluctuation assays from all four spores of a 

single tetrad from the same cross as in (B) shows 2:2 segregation of mutation rate.
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Abstract

I have used an improved method for measuring mutation rates to examine the

degree to which mutation rate varies in the yeast, Saccharomyces cerevisiae.  I determine

that mutation rate is robust to variations in the duration of the cell cycle, but varies

between strain backgrounds, between environments, and within the genome.  In each

case, I investigated the mechanism underlying this variation.  In Section 6.1, I summarize

the work described in this thesis.  In Sections 6.2 through 6.4, I discuss extensions of the

work described above.  In Sections 6.5 through 6.7, I recast my results in terms of the big

picture described in Chapter 1.  I highlight what I feel are the important unanswered

questions and, where possible, I describe experiments aimed at addressing these

questions.

6.1   Summary of major results

In this thesis I describe several improvements to the measurement of mutation

rates using fluctuation assay.  They are as follows:

• Scaling down and semi-automating the fluctuation assay to improve the

throughput of this assay (Chapter 2).

• Improving the analysis of data generated from fluctuation assays to detect

deviations from the Luria-Delbrück distribution (Chapter 2).

• I provide a definition for the effective target size used to convert phenotypic

mutation rates into per-base-pair mutation rates (Chapter 3).
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In this thesis I use the fluctuation assay to investigate mutation rate variation.  The

major results are as follows:

• The per-base-pair per-generation mutation rate varies 2-fold between URA3 and

CAN1 (3.80 x 10-10 and 6.44 x 10-10, respectively, Chapter 3).

• Mutation rate varies 6-fold across yeast Chromosome VI (Chapter 4).

• Mutation rate across Chromosome VI is correlated with replication timing

(Chapter 4).

• Mutation rate variation across Chromosome VI is dependent upon translesion

synthesis (Chapter 4).

• Mutation rate variation across the genome influences synonymous substitution

rates on short time scales and potentially gene location on longer time scales

(Chapter 4).

• Mutation rate is robust to variation in the duration of the cell cycle (Chapter 5).

• Mutation rate is elevated in a derived W303 strain compared to the ancestral

W303 and S288c strains (Chapter 5).

• Osmotic stress increases mutation rate, possibly by inducing strand breaks

(Chapter 5).

6.2   The concept of effective target size

In order to convert phenotypic mutation rates into per-base-pair rates, one needs

an estimate of the target size for phenotypic mutations.  There are two ways one can think

about target size.  One can think of target size as the number of possible base changes

that can give rise to a phenotype.  For the selections described in this thesis, this
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corresponds to the number of mutations capable of disrupting protein function and is an

inherent property of the sequence.  Alternatively one could think probabilistically about

target size.  I define the effective target size as the size of the genome, G, multiplied by

the probability that introducing a single genomic mutation (this could be a base-pair

substitution, insertion/deletion, transposition, etc.) will result in the phenotype of interest:

€ 

τ =G ⋅ P{mutation results in phenotype |mutation in genome}.

The effective target size relates the phenotypic mutation rate to the average per-base-pair

mutation rate and the per-genome mutation rate,

€ 

µ
Can

R

τ
Can

R

= ˆ µ bp =
Ug

G
,

where 

€ 

µ
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R  is the mutation rate to canavanine resistance, 

€ 

ˆ µ bp  is the genome-wide

average mutation rate per base pair per generation, and 

€ 

Ug  is the mutation rate per

genome per generation.  Similarly,
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where 
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τ
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R

CAN1 is the locus-specific effective target size for canavanine resistance at the

CAN1 locus (the probability of a mutation resulting in canavanine resistance given a

mutation at the CAN1 locus) and 

€ 

µbp

CAN1 is the average mutation rate per base pair per

generation at the CAN1 locus.  
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CAN1 and 

€ 
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CAN1 are related to 

€ 

τ
Can

R  and 

€ 

ˆ µ bp  through the

parameter λCAN1 which is the ratio of the mutation rate at the CAN1 locus compared to the

genome-wide average; λ = 1 identifies loci where the mutation rate equals the genomic

average, loci where λ < 1 are coldspots, and those where λ > 1 are hotspots:
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= τ
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€ 

µbp

CAN1 = λCAN1
⋅ ˆ µ bp .

The probabilistic definition of effective target size was put forward for two reasons:  (1)

to calculate the locus-specific mutation rate per base pair per generation and (2) in

response to the observation in Chapter 4 that moving a gene to a different location can

change its mutation rate.

6.3   Deviations from the Luria-Delbrück distribution

Detecting deviations from the Luria-Delbrück distribution:  Chapter 2 shows

that data generated from fluctuation assays often deviate from the expected Luria-

Delbrück distribution. In addition to fitting data to the one-parameter Luria-Delbrück

distribution, I fit the data to a two-parameter convolution between a Luria-Delbrück

distribution and a Poisson distribution, and quantify the improvement of fit by calculating

the sum-of-the-squared differences between the cumulative distribution of the data and

the theoretical curve for both models.  I define the improvement of fit as the decrease in

the sum-of-the-square differences between the one-parameter and the two-parameter

models and I use Akaike’s information criterion to determine which model best fits the

data while using the fewest parameters.

In addition to the improvement of fit metric used in this thesis, other metrics

could be used to detect deviations from the Luria-Delbrück distribution.  One possibility

is to determine the expected number of mutation events per culture, m, for each data set

using two methods:  the P0 method using the fraction of cultures with zero mutants, and

the Ma-Sandri-Sarkar maximum likelihood method [112] using the number of cultures

with one or more mutants, while excluding those cultures with zero mutants.  This would
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yield two independent estimates of m from the same data set.  Comparing the agreement

between these estimates of m could serve as an additional method for assessing the

quality of data generated from fluctuation assays.

Interpreting deviations from the Luria-Delbrück distribution:  In Chapter 2, I

used the quality of data assay to show that post-plating growth and mutation occurs on

canavanine plates; a result that was confirmed by demonstrating that this effect is

diminished by increasing the concentration of canavanine in the media.  Other processes

that introduce error into mutation rate estimates such as differential growth rates between

mutants and non-mutants [143] and poor plating efficiency [124, 126] will also produce

deviations from the expected Luria-Delbrück distribution.  Therefore, fitting fluctuation

data to the cumulative distribution and comparing the sum-of-the-square differences with

simulated data is a general method for assaying the quality of data resulting from

fluctuation assays.

Testing for deviations from the Luria-Delbrück distribution can be used to ask

biologically important questions.  For example, mutation rate is believed to increase

during meiosis [77].  This conclusion was based upon examining the frequency of

mutants before and after sporulation and assumes that no divisions went undetected.  An

alternative way to address this question is to perform a fluctuation assay using a diploid

strain homozygous for the URA3 gene near the centromere (to avoid loss of

heterozygosity in strains where a mutation has occurred).  After the exponential (mitotic)

growth period, cultures can be sporulated so that the final cell division will be meiotic.

The resulting spores can be assayed for 5FOA resistance.  If mutation rate in meiosis is

the same as in mitosis the distribution of 5FOA resistant mutants will follow the Luria-
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Delbrück distribution.  However, if the mutation rate is increased in meiosis, the

distribution of 5FOA resistant mutants will be a convolution of the Luria-Delbrück

distribution and Poisson distributions; a difference that can be detected using the methods

described in Chapter 2.

6.4   Mutation rate variation between strain backgrounds

In Chapter 5, I show that a derived W303 background harbors a single mutation

not present in the ancestral W303 background, which confers a 5-fold elevated mutation

rate.  In addition, I show that this mutation is epistatic with an msh2Δ, suggesting that the

mutation may be in a component of mismatch repair.  A candidate gene approach ruled

out MSH6 and MSH2 itself.  It is possible that the mutation is in another component of

mismatch repair.

There are several observations regarding the difference in mutation rate between

derived and ancestral W303 that warrant discussion here.  Table A-1 shows a summary of

62 fluctuation assays using several selections and several strain backgrounds.  Although

the derived W303 shows an elevated mutation rate compared to the ancestral W303 for

5FOA resistance and canavanine resistance, there does not appear to be a difference in

mutation rate to α-factor resistance between these two backgrounds.  The simple

explanation for this is that the derived strain used in this study (GIL066) is deleted for the

silent mating cassette, HMLα; whereas, the ancestral strain (GIL104) is not (Table 5-1).

Therefore, the ancestral strain possesses an additional mechanism for becoming α-factor

resistant:  gene conversion with HMLα.  This is consistent with the claim in Chapter 3
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that the mutation rate to α-factor resistance in GIL104 is higher than expected given the

number of genes involved the mating response.

Another observation, for which I do not have an explanation, is that in Figure 5-

5b, the mutation rate of the progeny from a cross between derived and ancestral W303

shows 2:2 segregation; however, none of the progeny have a mutation rate equal to that

of the derived W303 parental strain.  It could be that this difference is within the error of

the fluctuation assay, or it is possible that there is something more complicated at work,

which could shed light on the search for genetic basis of the elevated mutation rate in our

derived W303 strain background.

Figure 5-4 shows a segregation pattern of mutation rate from a cross between a

derived W303 strain and an S288c strain that is most consistent with two major-effect

loci.  This raises the possibility that the slight difference in mutation rate observed

between the ancestral W303 strain and S288c has a genetic basis.  Prior to this, I

suspected that the slight difference mutation rate between these strains was due to

differential growth on 5FOA (Appendix A).  To distinguish between these two

possibilities, mutation rate can be measured at both URA3 and CAN1 in a cross between

an ancestral W303 strain and S288c.

6.5   The role of mutator strains in evolution

Competition experiments and the role of deleterious mutations:  In well-adapted

populations, the mutation rate reflects a balance between the costs of accumulating

deleterious mutations and maintaining fidelity [13].  However, in environments where

beneficial mutations exist, the mutation rate sets the rate of adaptation and higher
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mutation rates can be favored.  Competition experiments have been used to examine

conditions under which mutators are favored [9, 62, 131].  The simplest expectation is

that the first population to acquire a beneficial mutation will win; therefore, the outcome

of the competition is determined only by the initial frequency of mutators and the

strength of the mutator allele.  This is insufficient to explain either the results or the

dynamics of competition experiments [9, 62, 131].  In reality the outcome of a

competition experiment depends upon the initial ratio of mutator to wild type, the

population size, the mutation rate, the mutator strength, the ratio of beneficial to

deleterious mutations, and the effects of beneficial and deleterious mutations on fitness.

An effect of deleterious mutations can be observed in the early time points of a

competition by the initial decrease in the frequency of mutators due to an increasing

deleterious load [9].  If the ratio of beneficial to deleterious mutations is low and the

fitness effect of deleterious mutations is high then mutators risk being eliminated (or

dramatically reduced in frequency) before the first beneficial mutation occurs.  This

effect becomes more severe in small population sizes.  It has been observed in

competition experiments that there exists a critical initial frequency of mutators, above

the mutators will win the majority of competitions and below which they will lose the

majority [62].  This critical frequency increases when the initial population size is

decreased.  By carefully measuring how the critical frequency changes with population

size, one can gain insight into the importance of deleterious mutations in competition

experiments.

Reversion of mutator alleles:  In natural populations, mutator alleles exist at low

frequency due to mutations in genes responsible for maintaining fidelity, such as the
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mismatch-repair gene, MSH2.  Mutator alleles increase fitness by increasing the

likelihood that a beneficial mutation will occur; when a beneficial mutation linked to a

mutator allele fixes (as in an asexual population), the population becomes entirely

mutators.  Once a population has become maximally adapted to its environment, selection

favors a lower mutation rate and the frequency of mutators should decline, since accruing

deleterious mutations imposes a cost that favors reversion of mutator to non-mutator

strains [129].  In laboratory experiments, mutators have been found to arise and fix in

non-mutator populations [122], but the reverse has not been observed.  The ease with

which mutators overtake non-mutator populations in the laboratory raises the question

why mutators are not more prevalent in nature.  There are three possible explanations.

Mutators may not be able to invade non-mutator populations as readily in nature; for

instance, if the ratio of beneficial to deleterious mutations is greater under laboratory

conditions.  This illustrates the need to accurately determine the distribution of fitness

effects under a variety of conditions.  Another possibility is that mutators are ultimately

an evolutionary dead end, because they generate a greater mutational load.  The third

possibility is that mutators in nature revert to non-mutators when lower mutation rates are

favorable.

The simplest mechanism for reversion is a mutation that reverts the mutator allele

itself.  Assuming that the target size for reversion of an msh2 allele is 100-times smaller

than the target size for the loss-of-function of this gene, and that the msh2 allele elevates

the mutation rate 100-fold, one would expect the rates at which non-mutators are

produced in a mutator population and vice-versa to be equal; however, there are several

problems with this reasoning.  If a lower mutation rate is favored, any second-site
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mutation that partially restores Msh2 function will be selected for in the population.

Even without selection, a second site mutation could occur and fix through drift.

Depending on the nature of the second site mutation, reverting back to wild type may

now require two mutations and may require going through an intermediate with an

elevated mutation rate. Another obstacle in reverting mutator alleles is that the mutational

spectra in a wild type and a mutator will differ.  For example, in an msh2 strain, 50% of

ura3 loss-of-function mutations are frameshifts at polynucleotide runs, compared to < 1%

in a wild-type strain.  Therefore, it is unlikely that a frameshift mutation that occurred in

a non-repetitive sequence in a wild-type strain will be perfectly reverted in an msh2

strain.

To test the idea that mutator alleles can revert by mutation, one could select for

loss-of-function of msh2 followed by selection for restoration of function.  This can be

done in a strain with an MSH2-ADE2 fusion protein.  ade2 cells are adenine auxotrophs

and accumulate a red pigment on low-adenine media.  Exposing a culture to a series of

selective conditions enriches for low frequency mutator alleles within a population.  After

several rounds of selection, the culture can be plated onto low adenine media and red

colonies will indicate strains carrying an msh2 allele.  To select for a compensatory

frameshift mutation in the msh2 background, the cells can be plated onto media lacking

adenine.  Alternatively, combining the msh2 allele with a polymerase (pol32) mutation,

with which it has a synthetic growth defect [98], can select for compensatory mutations.

Sequencing can reveal the locations of both mutations and fluctuation assays can be

performed to determine how the mutation rate in the reverted strain compares to the wild

type and to the mutator.  By assaying many combinations of loss-of-function and
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compensatory mutations, one can gauge the likelihood that mutator populations revert by

way of a precise reversion.  If mutators cannot easily revert to non-mutators in this way,

then an additional mechanism, such as horizontal-gene transfer [15], is necessary to

rescue beneficial mutations from a mutator background; therefore, long-term-evolution

experiments, where mutators have fixed in the population, and there is no exogenous

source of the wild-type allele, may succumb to a mutational meltdown and ultimately be

an evolutionary dead end.

6.6   The importance of mismatch repair in mutation rate variation

Throughout this thesis, mismatch repair was invoked as a likely mechanism

underlying mutation rate variation.  Although mutation rate variation described in

Chapter 4 can be attributed to the temporal separation of error-free DNA damage

tolerance and translesion synthesis, two previous studies on mutation rate variation within

the genome can be attributed to variation in the efficiency of mismatch repair either to

correct frameshift mutations in microsatellite sequences [46] or to proofread the leading

and lagging strands during replication [50, 102].  Mismatch repair deficiency is the most

commonly observed mechanism for the elevation of mutation rate in naturally occurring

mutator strains [64, 96] and in mutator strains originating during long-term evolution in

the laboratory [122].  Mismatch repair may also be responsible for the mutation rate

variation observed between laboratory strains in Chapter 5.

Future work is needed to address why mismatch repair mutators are so common.

It is possible that mismatch repair is a large target for mutation or that they are frequently

selected since they are among the strongest mutators.  Another possibility is that other
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mutator alleles are not selected because of an associated fitness cost.  In a long-term

evolution experiment 4 out of 12 lineages became fixed for mutators, three of which lost

mismatch repair function [122].  The other mutator carries a fitness defect, although it

unclear if the is a result of the mutator allele itself, a product of the mutator allele, or an

unrelated mutation [69].

6.7   The molecular basis of mutation rate

The role of translesion synthesis:  Figure 5-1 shows that, in yeast, the mutation

rate is constant per cell division, not per unit time.  A simple interpretation of this result

is that mutations are introduced at a single point in the cell cycle, most likely S-phase.

During S-phase there are several processes acting that can contribute to spontaneous

mutation rate:  DNA replication, mismatch repair, recombination (template switching),

and translesion synthesis.  Proteins belonging to the RAD6 epistasis group mediate the

template switching and translesion synthesis [31].  Deletion of RAD6 disrupts both error-

free DNA damage tolerance and translesion synthesis and reduces the spontaneous

mutation rate.  Disruption of only translesion synthesis (rev1, rev3, or rev7), but not

recombination, decreases mutation rate to same extent as a rad6Δ, suggesting that RAD6-

dependent mutations result from translesion synthesis [31].  The extent to which mutation

rate is decreased in these strains suggests that the majority of spontaneous mutations

result from translesion synthesis [61, 106].  Figure 4-8 shows that elimination of the

translesion polymerase, REV1, reduces mutation rate by 80% in late replicating regions

but has little effect on mutation rate in early replicating regions (Figure 4-8).
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What is the mechanism responsible for generating the remainder of spontaneous

mutations that occur independently of translesion synthesis?  One possibility is that each

step involved in maintaining fidelity (such as replication and mismatch repair) has an

associated error rate and that the spontaneous mutation rate is a product of those error

rates.  This would suggest that all cells in a population have the same mutation rate. An

alternative possibility is if all proteins involved in maintaining fidelity are present in their

optimal concentration, the mutation rate is essentially zero; however, given noise in gene

expression and the potential for errors during transcription and translation, cells may fail

to produce the amounts and ratios of proteins needed to maintain fidelity and thus

transiently possess a substantially elevated mutation rate [93].

Do transient mutators exist?:  The results in Chapter 4 show that mutation rate

varies spatially within the genome and that this variation is dependent upon translesion

synthesis.  In order to determine the mechanism for translesion synthesis-independent

mutation, I want to test the transient mutator model by asking if mutation rate varies

within a population.

The transient-mutator hypothesis makes two testable predictions:  the rate of

double mutations is greater than the product of the rates of two single mutations; and

when a double mutation occurs, both mutations are more likely to be drawn from a single

class of mutation rather than the mixture of classes seen when spontaneous mutations are

sampled from populations of cells.  This second prediction stems from the observation

that mutator alleles do not increase the rate of all types of mutation equally; therefore,

mutators can often be identified by their mutational spectra.  For example, in a rad27

strain, 75% of ura3 loss-of-function mutations result from large deletions or duplications
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flanked by 5 to 10 base-pair repeats [132].  These events represent 1% of ura3 loss-of-

function mutations in a wild-type strain.  I have isolated three loss-of-function alleles of

ura3, which can be reverted only by this type of mutation (Figure 3-1 and Table 5-2).

Taking a strain containing one of these alleles and selecting simultaneously for reversion

of this mutation and for α-factor resistance (or for α-factor resistance alone) will allow

me to test both predictions of the transient mutator hypothesis:  that mutations to α-factor

resistance are more frequent in cells that also have reverted the ura3 mutation, and that

most of these mutations will result from large duplications or deletions.  If mutation rate

is uniform within a population, the probability of α-factor resistance resulting from a

large deletion/duplication is 1%, regardless as to whether uracil prototrophy was selected

concurrently, as long as genetic mutators are not enriched during selection.  In contrast,

the transient-mutator model predicts that this probability will vary greatly between these

two selections:  1% for α-factor resistance alone and 75% if selection is concurrent with

selection for reversion of the ura3 allele.  If mutation rate is uniform across a population

of cells, it suggests that mutation rate is set by the intrinsic accuracy of DNA replication

and repair; however, if the transient-mutator model is correct, it suggests that the

mutation rate is set by processes other than replication and repair, such noise in gene

expression and errors during transcription and translation.

6.8   Genome structure, function, and evolution

There is an intimate relationship between the structure, function, and evolution of

the genome.  The genome must be structured such that each chromosome is faithfully

replicated and segregated in each cell cycle.  This puts a selective pressure on the number
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and distribution of replication origins to ensure that the entire genome is replicated before

the completion of S-phase.  In addition, several genomic features tend to be replicated at

particular times:  centromeres early and telomeres late.  Centromeres must function at the

end of S-phase; therefore, it makes sense that they are replicated early so that any

daughter-strand gaps have adequate time to be repaired by error-free repair.  Telomeres

may be replicated late as part of a regulatory mechanism.  A recent report shows that the

shortening of telomeres relieves repression of a subtelomeric origin, which results in

early replication and the recruitment of telomerase [3].

The replication profile, in turn, helps to dictate genomic evolution by biasing the

rates and types of mutations occurring across the genome.  For instance, mismatch repair

is more efficient in correcting mutations on the lagging strand [102]; therefore, the

direction of fork movement biases the rate of ochre suppressor mutations [50].  In

addition, in Chapter 4, I showed that the timing of replication effects mutation rate, in

that, late replicating regions are more likely to be subjected to translesion synthesis and

have a higher mutation rate.  The relationship between genome structure and evolution is

true for karyotype changes as well.  The positioning of tRNAs and transposons

predisposes particular translocation events [24, 82], and the distribution of essential and

dosage-sensitive genes across the genome can restrict which karyotype changes are

possible.  In Chapter 4, I showed that mutation rate variation within the genome may

influence the location of genes such that such essential genes tend to be located near

centromeres [130] and genes involved in generating antigenic diversity are located near

the telomeres [35].  However, further analyses should be done to determine the effect of

replication timing on gene location.
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The genome is both the product of and substrate for evolution.  It is clear that the

mutation rate varies within the genome, between environments and between strain

backgrounds.  Characterizing this variation and the underlying mechanisms will give us

insight into the forces responsible for shaping the genome.
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Appendix A

Notes and observations

A.1   Variability of mutation rate estimates from fluctuation assays

A.2   An alternative method for measuring mutation rates

A.3   Mutations observed in the yeast deletion collection

A.4   Growth of W303 and S288c on 5FOA

A.5   Selection for multiple mutations on 5FOA

A.6   Decreased cold tolerance in msh2Δ strains
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Abstract

During the course of my research I made several observation that may be useful

for reference or may serve as the basis for future research.  Although all of this

information is in my notebooks, the purpose here is to present this material in a more

organized, accessible form and to comment on these observations with regard to the work

in the main body of this thesis.

A.1   Variability of mutation rate estimates from fluctuation assays

Table A-1 summarizes mutation rate estimates from 62 fluctuation assays using

different genetic backgrounds, strains, media, and culture volumes.  Fluctuation assays

performed only a single time are not included in this table, nor are the fluctuation assays

from Chapter 4.  All assays in Table A-1 were performed in 96-well plates and 72

cultures were plated on selective media to determine the expected number of mutants per

culture, m.  This table is organized such that fluctuation assays, which are expected to

produce similar results, are grouped together, and the average mutation rate is reported.

This shows what has been stated several times in this thesis; namely, that there is a great

deal of variability in mutation rate estimates from fluctuation assays consistent with the

size of the 95% confidence intervals calculated from equations 24 and 25 from [107].

A.2   An alternative method for measuring mutation rates

Because of the difficulties in measuring mutation rates using the fluctuation assay,

I sought to develop an alternative method: the selection/counterselection method.  This

method requires a reporter gene for which one can select both for and against its function,



Table A-1.  Variability in mutation rate estimates from fluctuation assays

Mutation rate to 5FOA
R

Background Strain Vol (µL) Condition m N µ µAVERAGE

JYL338 100 2 x SC 2.32 11530400 2.01E-07

JYL338 100 2 x SC 1.46 13127000 1.11E-07

JYL338 100 2 x SC 2.41 12476200 1.93E-07

JYL338 100 2 x SC 1.66 16696000 9.94E-08

JYL338 100 2 x SC 1.08 4147125 2.60E-07

JYL338 100 2 x SC 1.06 6402450 1.66E-07

GIL066 100 2 x SC 1.15 13884200 8.29E-08

GIL066 100 2 x SC 1.08 14356200 7.55E-08

GIL066 100 2 x SC 1.94 13615800 1.42E-07

GIL066 100 YPD 1.53 14306200 1.07E-07

1.44E-07

JYL338 100 2 x SC + 1 M NaCl 2.53 6380200 3.97E-07

JYL338 100 2 x SC + 1 M NaCl 1.25 8344000 1.50E-07

GIL066 100 2 x SC + 1 M NaCl 1.03 4740400 2.17E-07

GIL066 100 2 x SC + 1 M NaCl 1.02 5916200 1.73E-07

GIL066 100 2 x SC + 1 M NaCl 1.30 5434600 2.39E-07

GIL066 100 YPD + 1 M NaCl 0.97 1537200 6.31E-07

3.01E-07

JYL516 10 2 x SC 1.71 1399400 1.22E-06

JYL516 10 2 x SC 1.80 1229873 1.46E-06

JYL516 10 2 x SC 1.92 1274631 1.51E-06

JYL516 10 2 x SC 0.81 595987 1.36E-06

1.39E-06

JYL516 10 2 x SC + 1 M NaCl 4.78 919700 5.20E-06

JYL516 10 2 x SC + 1 M NaCl 4.75 726453 6.54E-06

W303,
derived

JYL516 10 2 x SC + 1 M NaCl 5.78 987118 5.86E-06

5.86E-06

GIL051 100 2 x SC 0.48 18304400 2.65E-08

GIL051 100 2 x SC 0.31 26676000 1.16E-08S288c

GIL051 100 2 x SC 0.31 22543200 1.38E-08

1.73E-08

GIL087 100 2 x SC 0.48 11725600 4.07E-08

GIL087 100 2 x SC 0.32 10432800 3.08E-08

GIL104 200 2 x SC 1.31 20230400 6.49E-08

GIL104 200 2 x SC 1.07 22503200 4.77E-08

GIL104 200 2 x SC 1.47 20477600 7.19E-08

GIL104 200 2 x SC 1.01 19800800 5.08E-08

GIL104 200 2 x SC 0.90 20068000 4.48E-08

GIL104 200 2 x SC 1.45 21666400 6.70E-08

GIL104 200 2 x SC 1.06 22272800 4.74E-08

GIL104 200 2 x SC 1.04 20832000 5.01E-08

GIL104 200 2 x SC 1.37 19536000 7.03E-08

W303,
ancestral

GIL104 200 2 x SC 0.61 19968800 3.05E-08

5.14E-08



Table A-1 (continued).

Mutation rate to 10 x Can
R

Background Strain Vol. (µL) Condition m N µ µAVERAGE

GIL066 20 2 x SC 0.98 1448160 6.77E-07W303,
derived GIL066 30 2 x SC 1.38 2543800 5.42E-07

6.10E-07

GIL104 100 2 x SC 2.82 13590400 2.08E-07

GIL104 100 2 x SC 2.54 14040000 1.81E-07

GIL104 100 2 x SC 2.63 11880000 2.21E-07

GIL104 100 2 x SC 2.68 14212000 1.88E-07

GIL104 100 2 x SC 2.72 13174000 2.06E-07

GIL104 100 2 x SC 2.48 13298800 1.87E-07

GIL104 100 2 x SC 2.55 14480800 1.76E-07

GIL104 100 2 x SC 2.74 13326400 2.05E-07

GIL104 100 2 x SC 2.58 14465600 1.79E-07

W303,
ancestral

GIL104 100 2 x SC 2.59 12358400 2.09E-07

1.96E-07

Mutation rate to α-factor
R

Background Strain Vol. (µL) Condition m N µ µAVERAGE

GIL066 10 SC (0.2% Glucose) 2.47 488640 5.06E-06W303,
derived GIL066 10 SC (0.2% Glucose) 2.51 438800 5.73E-06

5.40E-06

GIL104 10 SC (0.2% Glucose) 1.97 356540 5.51E-06

GIL104 10 SC (0.2% Glucose) 2.00 362340 5.51E-06

GIL104 10 SC (0.2% Glucose) 2.24 357372 6.28E-06

GIL104 10 SC (0.2% Glucose) 2.42 367866 6.58E-06

GIL104 10 SC (0.2% Glucose) 2.07 370548 5.60E-06

GIL104 10 SC (0.2% Glucose) 2.30 378342 6.07E-06

GIL104 10 SC (0.2% Glucose) 2.13 398016 5.35E-06

GIL104 10 SC (0.2% Glucose) 2.28 376866 6.05E-06

GIL104 10 SC (0.2% Glucose) 2.31 384390 6.00E-06

W303,
ancestral

GIL104 10 SC (0.2% Glucose) 2.23 405630 5.50E-06

5.85E-06

Strain descriptions are in Table 5-1 except GIL104, which is described in Chapter 2.

All fluctuation assays in this table were performed in 96-well plates and 72 cultures were used to
determine mutation rate.  Values for the expected number of mutation events per culture were
determined using the Ma-Sandri-Sarkar maximum likelihood method (Sarkar et al. 1992).
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such as URA3.  To perform this assay a small number of cultures (3 to 10) are grown in

synthetic media selecting for the function or the reporter (SC-Ura in the case of URA3),

then plated onto media selecting against function (5FOA for ura3 mutants).  The logic

behind this assay is that ura3 mutants will arise in the culture during the growth period,

but be unable to divide until plated onto 5FOA, thus eliminating jackpot cultures

associated with the fluctuation assay.  The advantage is that one can use fewer cultures

(possibly a single culture) to determine mutation rates.

This assay is complicated for two reasons.  First, jackpots will still occur due to

mutations at loci other than URA3.  Out of 110 cultures, jackpots (instances where the

number of 5FOA mutants was greatly above the mean of other replicates) were observed

in 4 cultures.  Even after excluding these samples, the variance in the remaining

replicates is greater than expected from the Poisson distribution (data not shown).  This

suggests that the existence mutations in other loci conferring resistance to 5FOA while

permitting growth in SC-Ura pose a serious problem to the selection/counterselection

method of measuring mutation rate at URA3.  One way to correct for this is to replica

plate onto SC-Ura and subtract from the data those colonies that are uracil prototrophs.

There is another complication with the selection/counterselection method:  ura3 mutants

lose the ability to form colonies after being quiescent in SC-Ura.  To demonstrate this,

JYL338 was used to inoculate four 96 well plates, two with 100 µl cultures in SC

(fluctuation assays) and two with 100 µl cultures in SC-Ura (selection/counterselection

assays).  The cultures grew to saturation and were plated on 5FOA.  The size of the zero

class (the fraction of the cultures without any 5FOA resistant mutants) in the fluctuation

assays was 31% and 40%; whereas, the zero class in the selection/counterselection assays
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was 78% and 90%, suggesting that uracil auxotrophs cannot form colonies after

prolonged exposure media lacking uracil.

It is still possible that the selection/counterselection method of measuring

mutation rates will prove to be useful; however, it remains to be shown that, with respect

to the fluctuation assay, the selection/counterselection method will be easier to implement

for multiple loci and will not increase the uncertainty in mutation rate estimates.

A.3   Mutations observed in the yeast deletion collection

In Chapter 4, the yeast deletion collection was used to aid in construction of the

URA3-integration strain collection.  During this process, 47 Uptags and 5 Downtags were

sequenced and three deviations from the reported sequences were observed (Table A-2,

several point mutations were also observed; however, since most primer sites were only

sequenced to 1 x coverage, they are not reported here).  In all three cases the mutation is a

combination of a deletion (5 to 7 bases) and a tandem duplication (4 to 8 bases).  An

additional point mutation was also found in the Uptag of YFR012W, although this may

represent a mistake in the sequencing read.  In addition, for 5 of the 49 strains, the

universal primers (U1 and D1, Table 4-1) were unable to generate a PCR product.  For

two of those strains, ORF specific primers were able to generate a product over the

primer sites, and revealed multiple mutations in both D1 primer-binding sites, which in

YFL011W, carried over to the Downtag (Table A-2).



Table A-2.  Mutations in the yeast deletion collection  

Strain Feature From deletion project From sequencing

YFL023W Uptag ATATAGCTCCCACATTGCAG ATATAGCTCCCATATAGCTCC

YFR012W Uptag CATCAGGACCGTACAGAGAG C-TCAGGCATTAAGTAGAGAG

YFL001W Downtag TACGGTAGACCATTGCCGAG TACGGTAGACCATTGATG

YFL011W Downtag CACTTAGGTGGAATATCGAG TAGAAATTACGGTATATGAG

YFL011W Primer D1 CGGTGTCGGTCTCGTAG CAGAGTACAAGAATATT

YFR030W Primer D1 CGGTGTCGGTCTCGTAG CGGTGTCGG-CTCGCAG
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A.4   Growth of W303 and S288c on 5FOA

Comparison of growth on 5FOA for strains of the W303 and S288c backgrounds

shows that W303 forms large uniformly sized colonies with minimal background growth,

whereas S288c shows more background growth and forms variably sized colonies that

become smaller towards the center of each spot (Figure A-1).  From the experiment

described in Chapter 4, where URA3 was integrated at 49 locations across Chromosome

VI, it was noticed that two of these strains (GL·31 and GL·35) formed W303-like

colonies on 5FOA.  This phenotype is not due to the URA3 reporter or any cis-acting

factor, since this phenotype is still observed when URA3 is integrated on a different

chromosome.  Backcrossing these strains to S288c (strain BY4742) shows that this

phenotype is due to a single locus in each strain and that the locus is linked to the

KanMX cassette on Chromosome VI.  The progeny from this cross were assayed

qualitatively, so it is difficult to determine it the linkage is perfect, leaving two

possibilities:  deleting either of these ORFs [YFR012W and YFR019W (FAB1)] causes

this phenotype, or there is another mutation on the right arm of Chromosome VI

responsible for this phenotype.  These two strains were not produced in the same batch

during construction of the yeast deletion collection and other strains produced from the

same clone do not show this phenotype.  It is not apparent that either gene would be

implicated in growth on 5FOA; YFR012W is a hypothetical ORF with no known

function and FAB1 encodes a phosphatidylinositol kinase involved in vacuolar sorting

[140].  The observation of this phenotype in W303 and 2 out of 50 S288c strains suggests

that many mutations may be available conferring the differential growth phenotype on

5FOA.



W303 S288c

Figure A-1.  Comparison of growth on 5FOA for strains of the W303 and S288c backgrounds.  
W303 forms large uniformly sized colonies with minimal background growth; whereas, S288c 
shows more background growth and forms variably sized colonies that become smaller towards 
the center of each spot.
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A.5   Selection for multiple mutations on 5FOA

Since URA3 is a small, conserved gene whose function can be selected for both

positively and negatively, it may serve as a useful model for studying protein evolution.

In this role it would be useful to select for multiple mutations conferring varying degrees

of 5FOA resistance.  Figure A-2 shows selection for additional mutations in 5FOA

resistant strains that confer an increased growth advantage on this media.  240 single

colonies from a fluctuation assay to 5FOA resistance using strain GIL104 were grown to

saturation in YPD then pin transferred onto 5FOA.  Of the 238 strains that grew, 37

(16%) showed papillation on 5FOA after 10 days of growth.  Sequencing of the strains

prior to plating on 5FOA shows that each started as a homogeneous culture containing a

single 5FOA mutation, with the few exceptions described in Chapter 3.  Not much

information can be garnered from the existence or number of papillae for an individual

strain.  Since each culture was grown non-selectively prior to plating, each tube was

essentially a single-tube fluctuation assay.  Several strains contain the same loss-of-

function ura3 allele; however, there is no correlation between the identity of the ura3

allele and the number of papillae.  There are three possibilities for the nature of these

mutations:  they could be additional loss of function mutations at the already mutated

ura3 locus, they could be mutations occurring at another locus or loci conferring

additional resistance to 5FOA, or they could be mutations increasing the general growth

rate irrespective of drug resistance.



Figure A-2.  Selection for multiple mutations on 5FOA.  240 single colonies from a fluctuation 

assay to 5FOA resistance using strain GIL104 were grown to saturation in YPD then pin trans-

ferred onto 5FOA.  After ten days of growth, two strains failed to grow.  Of the remaining 238 

strains, 37 (16%) showed papillation on 5FOA. 

Normal growth on 5FOA

Papillation on 5FOA

No growth on 5FOA
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A.6   Decreased cold tolerance in msh2Δ strains

One disadvantage of mutator strains described in Chapter 1 is that they quickly

lose the ability to withstand stressful conditions to which they are not regularly exposed.

I have observed an example of this with respect to cold tolerance (Table A-3).  98 single

colonies of a wild-type strain and 321 single colonies of an msh2Δ mutator strain were

picked off of plates and inoculated into individual wells of 96-well plates.  All of the

strains grew to saturation then were held at 4° C.  After 18 months all of the pellets from

the wild type cells were intact and appeared normal; however, in 35 of the 321 msh2Δ

strains, intact pellets were not observed, indicating cell lysis.  Cells were pin transferred

to fresh YPD and grown overnight.  All 98 wild-type cells grew in YPD; however, of the

286 msh2Δ mutator strains with intact pellets, 46 did not grow.  Since these strains were

picked from a single colony, the simplest explanation for this result is that the msh2Δ

strains acquired cold-sensitive mutations, which were fixed when passaged through the

single cell bottleneck.



Table A-3.  Decreased cold tolerance in msh2Δ strains  

 MSH2 msh2Δ

Intact pellet 98/98 (100%) 286/321 (89%)

No intact pellet 0/98 (0%) 35/321 (11%)

Regrowth 98/98 (100%) 240/286 (84%)

No regrowth 0/98 (0%) 46/286 (16%)

Strains used in this experiment:  JYL338 (MSH2) and JYL516 (msh2Δ).  Strains were isolated

from single colonies off of 5FOA plates from fluctuation assays.  JYL338 was grown in either 2 x
SC or 2 x SC + 1 M NaCl.  JYL516 was grown in either 2 x SC, 2 x SC + 1 M NaCl, 2 x SC + 1 M

Glucose, 2 x SC + 1 M Sorbitol, or 2 x SC 0.1 µg/ml cycloheximide.
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Appendix B

Programs to analyze data from fluctuation assays

findMLm

findMLmTwoParam

scoreData

scoreDataTwoParam

generateLD

generatePO

generateTwoParam

sampleLD

sampleTwoParam

SSDScoreLD

SSDScoreTwoParam
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Abstract

Several programs were written to aid in the analysis of data from fluctuation

assays as described in Chapter 2.  All programs were written in Matlab and the code is

available online (http://murraylab.mcb.harvard.edu/fluctuation/).  A summary and

description of each program is provided below.

findMLm

Input:   data from fluctuation assay.

Output:   most likely value of m given the data.

Command:   findMLm(data)

This program requires the following programs to run:

scoreData, generateLD.

findMLmTwoParam

Input:   data from fluctuation assay.

Output:   most likely values of m and d given the data.

Command:   findMLmTwoParameter(data)

This program requires the following programs to run:

scoreDataTwoParam, generateLD, generatePO, generateTwoParam.

scoreData

Input:   data from fluctuation assay and m.

Output:   -log probability of observing the data given m.

Command:   scoreData(data, m)

This program requires the following program to run:

generateLD.

scoreDataTwoParam

Input:   data from fluctuation assay, m, and d.

Output:   -log probability of observing data given m and d.

Command:   scoreDataTwoParam(data, m, d)

This program requires the following programs to run:

generateLD, generatePO, generateTwoParam.
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generateLD

Input:   m, and max.

Output:   The Luria-Delbrück distribution from 0 to max with parameter m.

Command:   generateLD(m, max)

generatePO

Input:   lambda, and max.

Output:   The Poisson distribution from 0 to max with parameter lambda.

Command:   generatePO(lambda, max)

generateTwoParam

Input:   m, d, and max.

Output:   The combined Luria-Delbrück and Poisson distribution from 0 to

max with parameters m and lambda = m x d.

Command:   generateTwoParam(m, d, max)

This program requires the following programs to run:

generateLD, generatePO.

sampleLD

Input:   m, number of samples.

Output:   Random variables from the Luria-Delbrück distribution with

parameter m.

Command:   sampleLD(m, samples)

This program requires the following program to run:

generateLD.

sampleTwoParam

Input:   m, number of samples.

Output:   Random variables from a combined Luria-Delbrück and Poisson

distribution with parameters m and lambda = m x d.

Command:   sampleTwoParam(m, d, samples)

This program requires the following programs to run:

generateLD, generatePO, generateTwoParam.
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SSDScoreLD

Input:   data from fluctuation assay.

Output:   sum of the squared differences between the cumulative distribution

of the data and the cumulative Luria-Delbrück distribution with

parameter m determined from the data.

Command:   SSDScore(data)

This program requires the following programs to run:

findMLm, scoreData, generateLD.

SSDScoreTwoParam

Input:   data from fluctuation assay.

Output:   sum of the squared differences between the cumulative distribution

of the data and the cumulative combined Luria-Delbrück and

Poisson distribution with parameters m and lambda = m x d

determined from the data.

Command:   SSDScoreTwoParam(data)

This program requires the following programs to run:

findMLmTwoParam, scoreDataTwoParam, generateLD, generatePO,

generateTwoParam.
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