Mutation rate variation in the yeast, *Saccharomyces cerevisiae*

A dissertation presented

by

Gregory Ian Lang

to

The Department of Molecular and Cellular Biology

in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Biology

Harvard University
Cambridge, Massachusetts

May 2007
Mutation rate variation in the yeast, *Saccharomyces cerevisiae*

Abstract

Mutation is a fundamental process in biology. Mutation is necessary for evolution and lies at the heart of human disease. Variation in the rate at which mutations are produced can have profound consequences. Microorganisms that generate mutations at a higher rate have a selective advantage when adapting to novel environments, and this may play an important role in pathogenesis. An increase in the mutation rate of somatic cells may be a necessary step in the evolution of cancer, and individuals who inherit an elevated mutation rate are predisposed to developing the disease. For these reasons, the study of mutation rate variation has attracted great attention and impacted our understanding of nearly every aspect of biology from the dynamics of evolution, the mechanisms of bacterial pathogenesis, the functioning of the immune system, and the development of cancer. Despite its importance, the degree to which mutation rate can vary and the mechanisms underlying this variation are not entirely understood. A common method used to measure mutation rate is the fluctuation assay. I have increased the throughput of this assay and used it to characterize mutation rate variation in the budding yeast, *Saccharomyces cerevisiae*. I show that mutation rate is robust to variation
in the duration of the cell cycle, but varies between strain backgrounds, between environments, and within the genome. I show that mutation rate varies between two common laboratory yeast strains and that mutation rate is increased under osmotic stress, consistent with the hypothesis that high salt induces strand breaks. In addition, I show that the mutation rate in the yeast genome is correlated with replication timing, consistent with a model regarding the temporal segregation of two modes of DNA damage tolerance during replication: error-free DNA damage tolerance and translesion synthesis. In support of this model, I show that elimination of translesion synthesis reduces mutation rate variation within the genome.
Contents

Abstract iii
List of figures vii
List of tables ix
Acknowledgements x
Preface xiii

Chapter 1 Introduction 1
 1.1 The importance of mutation rate 2
 1.2 Examples of mutation rate variation 8
 1.3 Summary 16

Chapter 2 Improving the performance and analysis of fluctuation assays 19
 2.1 Materials and methods 20
 2.2 Methods for measuring mutation rate 27
 2.3 Fluctuation assays 29
 2.4 Phenotypic mutation rates 34

Chapter 3 Effective target size and the per-base-pair mutation rate 39
 3.1 Materials and methods 40
 3.2 Mutational spectra 42
 3.3 Effective target size 52
 3.4 Mutation rate per base pair per generation 59

Chapter 4 Mutation rate variation I: Variation across the yeast genome 62
 4.1 Introduction 63
 4.2 Materials and methods 66
 4.3 Mutation rate varies across Chromosome VI 76
 4.4 Mutation rate is correlated with replication timing 81
4.5 Model for replication timing and mutation rate 87
4.6 Discussion 90

Chapter 5 Mutation rate variation II: Variation with the duration of the cell cycle, environment, and strain background 97
5.1 Materials and methods 98
5.2 Mutations occur at a constant rate per cell division 100
5.3 Elevation of mutation rate under osmotic stress 101
5.4 Fixation of a mutator allele in a laboratory strain 108

Chapter 6 Conclusions and future directions 113
6.1 Summary of major results 114
6.2 The concept of effective target size 115
6.3 Deviations from the Luria-Delbrück distribution 117
6.4 Mutation rate variation between strain backgrounds 119
6.5 The role of mutator strains in evolution 120
6.6 The importance of mismatch repair in mutation rate variation 124
6.7 The molecular basis of mutation rate 125
6.8 Genome structure, function, and evolution 127

Appendix A Notes and observations 130
A.1 Variability of mutation rate estimates from fluctuation assays 131
A.2 An alternative method for measuring mutation rates 131
A.3 Mutations observed in the yeast deletion collection 135
A.4 Growth of W303 and S288c on 5FOA 137
A.5 Selection for multiple mutations on 5FOA 139
A.6 Decreased cold tolerance in msh2Δ strains 141

Appendix B Programs to analyze data from fluctuation assays 143

References 147
List of figures

Chapter 2
- 2-1 The fluctuation assay
- 2-2 Fluctuation assay on 5FOA
- 2-3 Fluctuation assay on 10 x canavanine
- 2-4 Fitting data from fluctuation assays
- 2-5 Simulation of fluctuation assays

Chapter 3
- 3-1 Mutational spectra for 5FOA resistant ura3 mutants
- 3-2 Mutational spectra for canavanine resistant can1 mutants
- 3-3 Probability of in-frame slippage events in the yeast genome

Chapter 4
- 4-1 Schematic of strain construction
- 4-2 Coverage of Chromosome VI
- 4-3 Mutation rate varies across Chromosome VI
- 4-4 Pairwise comparisons of mutation rates at URA3 and CAN1
- 4-5 Mutation rate is correlated with replication timing
- 4-6 Comparison of replication timing and mutation rate
- 4-7 A model for template switching and translesion synthesis
- 4-8 Mutation rate variation is dependent upon translesion synthesis
- 4-9 Synonymous substitution rate and mutation rate

Chapter 5
- 5-1 Mutations occur at a constant rate per cell division
- 5-2 Mutation rate increases under osmotic stress
- 5-3 Salt sensitivity of rad52Δ strains
5-4 Mutation rate variation between common laboratory strains 110
5-5 A derived laboratory strain of W303 contains a single mutator allele 112

Appendix A
A-1 Comparison of growth on 5FOA 138
A-2 Selection for multiple mutations on 5FOA 140
List of tables

Chapter 2
2-1 Per-genome per-generation mutation rates for ten clones of GIL104 35
2-2 Fitting data to a two-parameter model of post-plating growth 36

Chapter 3
3-1 Primers used in Chapter 3 41
3-2 Multiple mutation events 48

Chapter 4
4-1 Primers used in Chapter 4 67
4-2 Strains used for URA3 integration 69
4-3 Autonomously replicating sequences on Chromosome VI 85

Chapter 5
5-1 Strains used in Chapter 5 99
5-2 Mutational spectra 106

Appendix A
A-1 Variability in mutation rate estimates from fluctuation assays 132
A-2 Mutations in the yeast deletion collection 136
A-3 Decreased cold tolerance in msh2Δ strains 142
Acknowledgements

Despite my frequent use of the word “I,” the work described in this thesis is far from an individual effort—I received help and support from numerous people, both inside and outside of the lab. Most notably, my thesis advisor Andrew Murray made many intellectual contributions and provided a great deal of support throughout my stay in his laboratory. In many ways Andrew was the ideal advisor: he afforded me the freedom to work on several projects that lie outside of the main focus of his lab, he was readily accessible, and he provided me with helpful feedback throughout this process.

One of Andrew’s best attributes is his ability to recruit excellent graduate students and post-docs to his lab who not only bring expertise in many fields, but also have made working here very enjoyable. Over my years, I have overlapped with a number of individuals: Jun-Yi, Dawn, Soni, Chin-Lin, Erik, Grzegorz, John, Kevin, Matthieu, Scott, Thomas, Ayellet, Derek, Joana, Larry, Michael, Nate, Nick, Nilay, Vahan, Will, Anu, Beverly, Juliet, and Linda, all of whom have helped me in one way or another.

I would like to thank Erin O’Shea, Dan Hartl, Matt Michael, and Roy Kishony (my thesis committee) for providing their thoughts on my project and for suggesting a
number of experiments. In addition, I benefited greatly from discussions with individuals outside of Harvard, in particular, Tom Petes, Graham Walker, and members of the Walker Lab.

My classmates and friends have played an integral part in my graduate experience—I feel that I have learned as much outside of the lab as I did at the bench. Importantly, our time away from the lab made life in Boston enjoyable; I am thankful to have been brought in with such a great group.

I would not be the person I am if not for my family: my parents John and Lois and my wife, Suzanne. My parents have supported me in everything and Suzanne was willing to uproot and move up here to Boston. This thesis means as much to them as it does to me. Since I am the only scientist, my family doesn’t understand exactly what it is that I do; however, they are always cheering for me, and that is all that matters.
For my parents, John and Lois,
and my wife, Suzanne.
Preface

It was not my intention to devote my graduate career to studying mutation rate. I often claim—although others may not agree—that I was the first graduate student to join this lab with the explicit intention of studying experimental evolution. My initial motivation in learning the fluctuation assay was to determine if a fraction of mutations occur at a constant rate per unit time, and if so, to determine if this is sufficient to explain the observation that the per-genome mutation rate increases under nutritional stress. It took several years before I was sufficiently comfortable with the assay to feel confident in my estimates of mutation rate. Two things occurred during this time: I became interested in improving the fluctuation assay itself and I made several observations regarding mutation rate variation that were worth pursuing—that pursuit is described here. As is always true with any research project, I could not follow up on all of my observations, and it is my hope that this thesis is sufficiently clear and well organized such that others may bring these projects to fruition.

In many ways this thesis is presented in reverse-chronological order. My earliest experiments, examining mutation rate variation with respect to growth rate, environment,
and strain background, are described in Chapter 5. The examination of mutation rate variation across yeast Chromosome VI, the observation that mutation rate is correlated with replication timing, and a proposed mechanism for this relationship occupy Chapter 4. My most recent work: generating accurate estimates of the per-base-pair mutation rate in yeast, along with a description of the improvements I have made to the fluctuation assay, is presented in Chapters 2 and 3. The bookends, Chapter 1 and Chapter 6, provide examples of the importance of mutation rate variation, place this work in the context of those studies, and highlight the important unanswered questions.

I expect to publish two papers from this thesis. Chapters 2 and 3 have been submitted to *Genetics* with the title “Estimating the per-base-pair mutation rate in the yeast, *Saccharomyces cerevisiae*.” Chapter 4 is in preparation and will be submitted shortly. Chapter 1 was written with the intent that it can serve as the basis of a review article, should I choose to write one. In addition, I hope that the observations and discussions in Chapter 6 and Appendix A will one day serve as the basis for publications by other authors.
Chapter 1

Introduction

1.1 The importance of mutation rate

- *Determining the optimal mutation rate*
- *Selection for elevated mutation rates*

1.2 Examples of mutation rate variation

- *Genetic variation*
- *Variation within the genome*
- *Environmental variation*
- *Variation inferred from sequence data*

1.3 Summary
Abstract

The vast majority of mutations are deleterious. Therefore, there is selection pressure to keep mutation rates low. Two arguments have been used to explain why mutation rate is not zero: there is a cost associated with ensuring fidelity and some mutation is necessary to generation variation so that a species can adapt to changing environments. There exists a large amount of variation in mutation rate, which plays a role in evolution, in cancer progression, in the ability of the immune system to function, and in the ability of pathogenic bacteria to evade the immune system. In this chapter, I review the forces acting on mutation rate, the degree to which mutation rate varies, and the biological significance of this variation.

1.1 The importance of mutation rate

Determining the optimal mutation rate: Early observations regarding spontaneous mutation showed that the vast majority of mutations are deleterious, raising the question of why the mutation rate does not evolve to zero [127]. There are two possible explanations. The cost associated with increasing fidelity may prevent mutation rate from being lowered [13, 55]. Alternatively the existence of beneficial mutations may be responsible for setting the lower bound on mutation rate [65]. Theory predicts that for an asexual population periodically exposed to new environments where beneficial mutations exist, the optimal mutation rate will be proportional to the frequency with which new environments are encountered [92]. However, there are several difficulties with the hypothesis that mutation rate reflects a balance between the effects of deleterious and beneficial mutations [121]. If the time between environmental shifts is long, during
the intervening period selection will lower mutation rate below the optimal level [97]. It has been shown experimentally that continued exposure to environments where beneficial mutations exist selects for mutation rates orders of magnitude higher than the wild-type mutation rate [95, 122]. Therefore, a population in a changing environment may overshoot the long-term optimal mutation rate during periods of selection. A third difficulty is that the effect of beneficial mutations on mutation rate is limited in sexual populations, since alleles modifying the mutation rate are unlinked from the mutations they generate [65]. Therefore, any genetic exchange will limit the effect that beneficial mutations will have on setting the optimal mutation rate. Given these concerns, it is more likely that mutation rate reflects a balance between the fitness cost associated with the accumulation of deleterious mutations and the physiological cost of maintaining fidelity. However, there is little experimental evidence showing that lowering mutation rate imposes a fitness cost [121]. Strains with a lower mutation rate are difficult to isolate; those that have been studied have a lower mutation rate not because of increased fidelity, but due to the loss of the ability to tolerate DNA lesions, which would otherwise be converted into mutations [106].

It is thought that the selective pressures responsible for tuning mutation rates act on the per-genome mutation rate (rather than the per-base-pair mutation rate) and that most DNA-based organisms have settled on a similar per-genome mutation rate, implying that all organisms are under the same selective pressures [23]. These conclusions are based on the observation, that for DNA-based organisms, the per-base-pair mutation rate varies by four orders of magnitude, whereas the per-genome mutation rate is roughly
constant [23]. This observation breaks down in higher eukaryotes, where the per-base pair mutation appears to reach a minimum of 10^{-10} per base pair per generation [22].

Selection for elevated mutation rates: Since the vast majority of mutations are deleterious, theory predicts that for a population well adapted to its environment, selection will lower mutation rate to the point at which the benefit does not outweigh the cost associated with increased fidelity. However, in many regimes in which beneficial mutations exist, mutation rate sets the rate of adaptation and higher mutation rates will be favored. Despite the deleterious effect of mutation, strains with an elevated mutation rate exist in natural populations at frequencies higher than predicted by mutation/selection balance [5, 64, 79]. Many laboratory competition experiments using microorganisms such as *Escherichia coli* and *Saccharomyces cerevisiae*, show that strains with an elevated mutation rate (mutators) can out-compete strains with a wild-type mutation rate (non-mutators) [9, 62, 131]. A typical competition experiment involves mixing mutators and non-mutators in a fixed ratio and monitoring their relative frequencies over many generations. This requires that the strains be differentially labeled using auxotrophic markers, drug markers, or fluorescent reporters, each of which may carry a fitness cost which must be taken into account when interpreting results from these experiments. Competitions are typically performed under conditions that laboratory strains are not frequently exposed to, such as low glucose, a condition where mutators have a high probability of fixing in a population that starts as a 1:1 mixture of mutators to non-mutators. Several lines of evidence show that the advantage of the mutator strains is not due to the mutator allele itself, but is an indirect advantage resulting from the ability of the mutator strain to produce beneficial mutations at a higher rate than non-mutators and
hitchhike to fixation with these mutations [9, 117, 121]. The dynamics of competition experiments show that at early times the mutators have either no fitness advantage or a slight disadvantage, presumably due to the accumulation of deleterious mutations [9]. In addition, mutators do not increase in frequency until after a lag period corresponding to the waiting time for the first beneficial mutation. Consistent with this, the lag time is dependent upon the strength of the mutator allele: the higher the elevation of mutation rate, the shorter the lag time [9]. Mutator strains, which arise and fix in long-term evolution experiments, can be transfected with the wild-type allele without diminishing the fitness of the strain [117].

The probability that mutators will win a competition is frequency dependent, in that the fraction of mutators in a population will increase when mutators are frequent and decrease when mutators are rare [9]. This is because, as stated above, the advantage of mutator strains is that they are able to generate beneficial mutations more rapidly than non-mutators. However, when mutators are exceedingly rare it becomes more likely that the next beneficial mutation will occur in the non-mutator subpopulation. Therefore, there exists a critical frequency of initial mutators in a population above which the mutators will win the majority of the competitions and below which the non-mutators will win. This critical frequency depends upon the initial population size [62]. In one experiment it was found that at an initial wild-type population size of 10^5, the critical frequency of mutS mutators needed to win the competition is 1 in 100; whereas, if the initial population size is 10^7, the critical mutator frequency is reduced to 1 in 10^5 [62]. This result has been interpreted to mean that the probability of mutators winning is frequency-independent and depends only upon the existence of at least one mutator
bacterium containing a beneficial mutation prior to the start of the competition [62]. However another explanation is that mutators are not only competing against the non-mutator subpopulation but also against the accrual of deleterious mutations. Therefore, in order for a mutator to win the competition, the mutator population must generate a beneficial mutation before the non-mutator population and before the accrual of deleterious mutations eliminates the mutator population.

The discussion thus far has assumed that a competition is decided by which population acquires the first beneficial mutation. This may be true for small population sizes with a low beneficial mutation rate; however, in most situations, multiple beneficial mutations will occur on top of one another [17]. In this situation the winner of the competition is determined by the rate at which the most-fit clone in each subpopulation increases its fitness. The outcome of these competitions is difficult to evaluate analytically and may require numerical simulation.

Mutators have been shown to arise and fix during evolution experiments with *E. coli* in glucose-limited media [69, 94, 95, 122] and in the mouse gut [39]. In one experiment, twelve lines of *E. coli* were established and transferred daily to fresh media [68]. After 20,000 generations, four out of twelve lines were fixed for mutators [69, 122]. Analysis of this experiment shows that, consistent with the competition experiments, the benefit of the mutator strain is independent of the mutator allele itself; therefore, the mutator strain hitchhiked to fixation. In two of the three lines the fitness of the population increased during the time where the mutator strain was sweeping the population. The rate at which the mutator strain sweeps through the population is an indication of the fitness of the beneficial mutation it acquired relative to the population.
average. During competition experiments with small population sizes and low mutation rates, this is approximately equal to the effect of a beneficial mutation on the ancestral background, since the mutation responsible for the increase of the mutator subpopulation is likely to be the first beneficial to have occurred and is likely to have occurred in a background with a minimal deleterious load. However, during the long-term evolution experiment the rate at which the mutator allele increased in frequency is slower than would be predicted based upon the fitness of the clone [117]. This slowing of the mutator sweep is due to clonal interference, the presence of multiple beneficial mutations increasing in frequency concurrently, which increases the average population fitness and slows the rate at which the highest fitness clone overtakes the population [37]. Clonal interference can diminish the advantage of elevated mutation rates in large asexual populations [12, 17, 37, 138].

The existence of mutator alleles at low frequencies in populations is thought to increase the rate of adaptation [129]. When beneficial mutations are plentiful, high mutation rates will be favored and low frequency mutator alleles will rise to fixation in the population by hitchhiking with beneficial mutations. However, when a population is well adapted to its environment and beneficial mutations are rare, selection favors a lower mutation rate and the frequency of mutators should decline, since the cost of deleterious mutations favors reversion of mutator to non-mutator strains [129]. Indeed, many commensal and pathogenic strains are commonly found to possess an elevated mutation rate [43, 64, 79]. Screening of the Food and Drug Administration’s bacterial pathogen collection and reference collections of natural isolates of *E. coli* and *Salmonella enterica* for strains with elevated mutation rates shows that over 1% of pathogenic *E. coli* and *S.*
enterica strains show mutator phenotypes due to the loss of mismatch repair [64]. Many studies have detected high frequencies of mutator alleles in clinical isolates such as uropathogenic *E. coli* [14] and *Pseudomonas aeruginosa* isolates from the lungs of Cystic Fibrosis patients [96]. There are several explanations for the existence of mutator alleles in pathogenic strains. One possibility is that since pathogenic strains derive nutrients from the host, many mutations, which would otherwise be deleterious, are selectively neutral; therefore, pathogenic strains are not under the same selective pressure to minimize mutation rate and mutators may become enriched through drift [128]. Higher mutation rates may also be favored as a consequence of antibiotic selection. Multiple rounds of antibiotic selection will increase the fraction of mutators in a population [78]. However, antibiotic resistance in pathogenic strains is usually conferred by the acquisition of multi-drug resistance plasmids rather than point mutation [135]. An additional possibility is that higher rates of mutation allow for loss of many nonessential proteins that could otherwise be targeted by the host immune system [128].

In addition to the role of mutators in pathogenic bacteria, an elevated mutation rate is also a hallmark of cancer progression. Cancer cells are associated with many forms of genetic instability including aneuploidy, chromosomal instability, microsatellite instability, and an abundance of point mutations [72]. These observations led to the suggestion that an cancer cells must have acquired mutations in genes involved in maintaining genomic fidelity and that this may be a necessary event for the development of cancer [71, 73]. In addition, the observation that the basal mutation rate is insufficient to account for the number of mutations necessary in the evolution of cancer suggests that acquiring an elevated mutation rate may be an early event in the evolution of cancer.
rather than an outcome of cancer progression [72]. This hypothesis is supported by the observation of microsatellite instability in the early stages of cancer progression [48, 118] and the association of mutations in mismatch repair genes with a hereditary form of colon cancer [6, 26, 63, 99].

1.2 Examples of mutation rate variation

Genetic variation: Because of the role of mutator strains in evolution, pathogenesis, and cancer, and the usefulness of mutator strains in studying the mechanism of DNA repair pathways, a large amount of research has focused on genetic variation of mutation rate, including several screens to identify mutator alleles [31, 83]. Over 30 mutator loci have been identified in *E. coli* [47]. A screen of the yeast deletion collection for strains with elevated mutation rates identified over 30 mutator alleles including most of the known mutator alleles and fourteen previously uncharacterized mutator alleles [49]. Mutator alleles have been found to be involved in many cellular functions such as mismatch repair, base-excision repair, nucleotide-excision repair, DNA replication, recombinational repair, cell-cycle checkpoints, and oxidative stress response [31]. Mutator alleles preferentially increase particular types of mutational events and range in strength up to 100-fold yeast and 1000-fold in *E. coli* [47, 49, 83].

Many of the mutator strains found in nature and during experimental evolution result from loss of mismatch repair. The role of mismatch repair is to correct errors made during replication, primarily one or two base-pair frameshift mutations and missense mutations [31, 60, 87]. In bacteria, thirteen proteins are necessary for mismatch repair, most of which play roles in other repair pathways [60]. The three core proteins of
mismatch repair are MutS, MutL, and MutH. MutS functions as a homodimer and is responsible for recognizing and binding to mismatched bases. MutL coordinates association of MutS with and other components of the repair machinery. MutH discriminates the old strand from the new and preferentially nicks the new strand so that the inappropriate nucleotides can be removed. In eukaryotes the MutS function is carried out by two heterodimeric complexes of MutS Homolog proteins (MSH2/3 and MSH2/6). Similarly, the MutL function is carried out by two heterodimeric complexes of MutL Homolog proteins and PMS2 (MLH1/PMS2, MLH1/2, and MLH1/3). Eukaryotes do not possess a MutH homolog; instead, the MLH proteins may carry out the functions of MutH [52].

Three of the four bacterial lines that evolved elevated mutation rates during a long-term evolution experiment contain mutations in components of mismatch repair: two mutL mutators and one mutS mutator [122]. Mutations in the human homologs of these genes hMSH2 [26, 63] and hMLH1 [6, 99] are associated with hereditary nonpolyposis colon cancer (HNPCC). Studies of natural populations show that mismatch repair mutators are commonly found in commensal and pathogenic strains [64, 79, 96]. Why mismatch repair mutators are frequently selected is an area of increasing interest; it is possible that loss of mismatch repair confers additional benefits, that the loss of other pathways imposes a fitness cost, or they are frequently selected since they are among the strongest identified mutators.

Variation within the genome: In addition to genetic variation, mutation rate varies within the genome. Inverted repeats in the promoter of *Salmonella* flagellar synthesis genes can undergo frequent recombination events [120]. Microsatellite
sequences and polynucleotide runs are prone to frameshift mutations, even in cells proficient for mismatch repair. Bacteria have found a way to make use of this increased rate of mutation by placing these hypermutable sequences in the regulatory or coding regions of genes where phenotypic variation is beneficial [2]. Loci containing of these sequences are known as contingency loci and the process of using these sequences to create variation is known as phase variation [89]. Screening of whole genome sequences of the human pathogens, *Haemophilus influenzae* [133], *Neisseria meningitidis* [113], and *Campylobacter jejuni* [101] have identified over 50 loci subject to phase variation. These contingency loci are typically involved in the biosynthesis of cell surface components, such as lipopolysaccharides, adhesions, and capsular proteins. Phase variation may be responsible for the rapid generation of antigenic variation of pathogenic strains following a population bottleneck [2].

Employing hypermutable sequences to generate phenotypic variation is not limited to prokaryotes. A screen of the yeast genome identified 44 loci containing tandemly repeated intergenic sequences, the majority of which show length variation between different strains [134]. Most of the tandem repeats are found in genes encoding cell wall proteins or proteins involved in cell wall synthesis and maintenance [134]. Interestingly, the number of tandem repeats correlates with phenotype: increasing the number of repeats in the cell surface adhesion gene, *FLO1*, increases the strength of adhesion [134]. A similar observation has been made in dogs; namely, the number of tandem repeats in developmental genes correlates with physical features such as snout length [27]. The overrepresentation of triplet repeats in developmental genes could explain the rapid morphological changes seen in domesticated dogs [27, 103].
In order to recognize a vast array of antigens, cells of the immune system must be able to generate a large amount of sequence diversity within the variable region of antibodies. It is estimated that humans generate 10^9 unique antibodies [18]. The immune cells use a two-step process for generating this diversity. First the antigen-contacting region is assembled in a combinatorial fashion by recombination between variable (V), diversity (D), and joining (J) segments through non-homologous end joining known as V(D)J recombination [114]. The amount of variation created by this process is small compared to the diversity seen in antibodies. The majority of the diversity is generated by somatic hypermutation, a process by which the immune cell targets the variable region for mutagenesis [18]. The first step in somatic hypermutation is the targeting activation-induced deaminase (AID) to the variable region. AID is B-cell specific cytosine deaminase that acts on DNA to produce deoxyuridine [91]. Targeted deoxycytidine deamination can produce mutations through multiple pathways [18]. Replication across deoxyuridine results in a transitions from G:C to A:T base pairs. Recognition of the inappropriate G:U base pair by mismatch repair can result in mutations at adjacent sites. In addition, uracil-DNA glycosylase may excise the uracil base leaving an abasic site. Abasic sites can result in mutagenesis by either initiating non-homologous end joining or translesion synthesis [18].

Both of the mechanisms described above, phase variation in pathogenic bacteria and somatic hypermutation in the immune system, allow cells to generate variation specifically in regions where it is needed; and, unlike mutator alleles, avoid the cost of globally elevating the mutation rate. There are other forms of mutation rate variation within the genome that do not have an obvious selective benefit; rather, may simply be a
consequence of genome structure. The yeast genome contains eight nearly identical tRNA-Tyr loci any one of which can be mutated to an ochre-suppressor tRNA; and it was noticed that there is a large difference in the frequency with which each of the eight tRNAs acquire the suppressor mutation [50]. Although the mechanism for variation in mutation rate across the genome is not known for the case of the tRNA-Tyr ochre suppressor mutation, it has been observed that the ability of repair proteins to access the DNA can lead to variation in mutation rate across the genome. Incorporating a microsatellite sequence in frame with the URA3 reporter at various locations in the yeast genome, reveals that the rate of microsatellite frameshift mutation varies 16-fold over ten different locations in the genome [46]. Repeating this experiment in a mismatch repair-deficient strain dramatically reduces this variation, suggesting that the majority of the variation in frameshift mutation rates results from variation in the ability of mismatch repair proteins to access the DNA and not from the variation in the polymerase-error rate [46]. In addition to variation in the ability to repair frameshift mutations across the genome, mismatch repair is more efficient in correcting errors on the lagging rather than the leading strand during replication in yeast [102]. The difference is attributed to the model of mismatch repair strand discrimination in eukaryotes, where nicks generated during replication are used to identify the nascent strand. Due to the asymmetry of replication, nicks are more frequent on the lagging strand; therefore, misincorporated bases on this strand can be more easily excised.

Environmental variation: In addition to mutation rate variation within the genome, mutation rate can vary with the environment. There are two ways the environment can influence mutation rate. The environment can be directly mutagenic; or
the environment may cause a cell to enter a compromised state in which mutations occur at a higher frequency. The former would include all environmental mutagens including ionizing radiation, UV radiation, alkylating agents such as methyl chloride and ethyl methanesulfonate, crosslinking agents such as nitrogen mustard and cisplatin, and intercalating agents such as psoralens and aflatoxins [31].

An example of an environment that causes an elevation of mutation rate without directly damaging DNA is high cadmium concentrations [51]. Cadmium has been shown to increase mutation rate by inhibiting mismatch repair; and, exposure of yeast cells to micromolar concentrations of cadmium increases mutation rate to levels 50% of that seen in mismatch repair deficient cells [51]. The ability of cadmium to inhibit mismatch repair provides a possible mechanism to explain cadmium toxicity [80].

Another example of an environmental effect on mutation rate is the observation of an elevated mutation rate in non-growing (or slowly-growing) stationary-phase cells [110]. The classic Luria-Delbrück experiment shows that mutations in *E. coli* conferring resistance to T1 bacteriophage occur prior to exposure to the phage [75]. It has been pointed out that such a strong selection can only detect mutations that occur prior to plating since sensitive cells are killed once the phage has been encountered; therefore, this experiment leaves open the possibility that additional mutations can occur after exposure to selection [8]. Using nutritional reporters in both bacteria [8, 41, 115] and yeast [42, 123], several experiments report that mutations continue to occur in apparently non-dividing cells after exposure to selection, and these mutations occur preferentially at the locus under selection. This idea that mutations are targeted specifically to regions where they are likely to confer a selective advantage is known as directed mutagenesis.
The suggestion that mutations occur more frequently when beneficial than when neutral is in conflict with the Darwinian assumption that the rate at which variation is generated is independent of any selective benefit that it may provide. Several alternative explanations were proposed to explain this observation, such as selection against mutations prior to plating and additional post-plating cell divisions due to the selection for an intermediate genotype [66, 67, 85]. Currently, directed mutation has little support and this phenomenon is now referred to as adaptive mutation in order to distinguish it from directed mutation [28]. Adaptive mutation states that the global mutation rate is elevated in stationary phase (non-dividing) cells [29, 108], and that this may be a general stress response [108]; although the subject remains controversial [109]. A survey of natural populations found variation in the degree to which strains undergo stationary phase mutation, in that strains with a high mutation rate during exponential growth show less stationary phase mutation than strains with a low mutation rate during exponential growth [4].

Variation inferred from sequence data: Due to the wealth of genomic data available several inferences have been made regarding variation in mutation rate across the genome. These experiments utilize sequence data to characterize the distribution of neutral substitutions between sequence alignments; such as substitutions at synonymous sites, intergenic sequences, introns, and repetitive elements [25]. Two confounding factors in these analyses are that the mutations themselves may not be selectively neutral and that changes to genome structure during evolution may alter the patterns of substitution. Despite the caveats, these analyses have revealed mutation rate variation on many length scales from individual bases to entire chromosomes [25]. At the smallest
level are sequence context effects, where mutation rate varies depending upon the
identity of the flanking bases [57] and on length scales less than ten base-pairs [119].
Mutation rate variation is also identified on the kilobase to megabase length scale in the
mammalian genome [119]. Comparison of substitutions in repetitive elements supports
the existence of mutation rate variation on the megabase length scale in the mammalian
genome and suggests that little variation exists on length scales less than 100 kilobases
[33]. This variation has potential biological importance in that regions of high neutral
substitution rates are enriched for genes involved in extracellular communication,
whereas housekeeping genes tend to be found in regions of low substitution rates [11].
Interestingly, similar analyses have failed to find evidence for mutation rate variation in
the yeast genome [10].

In addition to variation along a chromosome, substitution rates also vary between
chromosomes [70]. In humans, the X chromosome shows a lower rate of synonymous
substitutions compared to the Y chromosome and the autosomes [70]. Several
explanations have been put forward to explain this phenomenon such as higher mutation
rates in males due to more germ-line division [86] or selection pressure for lower
mutation rate on the X chromosome due to exposure of deleterious mutation when
hemizygous in males [81].

1.3 Summary

Mutation rate is an important parameter in evolution. It limits the speed of
adaptation in populations with beneficial mutations; in the absence of beneficial
mutations it sets the equilibrium fitness of the population. Mutation rates vary between
species, between individuals of the same species, within the genome, and between environments. This variation can have important biological consequences in setting the rate of adaptation, in the struggle between pathogenic strains and the host immune system, and in the evolution of cancer. Despite its importance, the extent of mutation rate variation is unknown and there are large uncertainties in estimates of the per-genome per-generation mutation rate. Using the budding yeast, *Saccharomyces cerevisiae*, I have made improvements to the calculation of mutation rates and characterized mutation rate variation. Chapter 2 describes improvements I have made to the performance and analysis of the fluctuation assay in order to generate accurate estimates of the phenotypic mutation rate. Conversion of phenotypic mutation rates into per-base-pair rates requires an estimate of the target size for phenotypic mutation. Chapter 3 outlines a probabilistic definition for the effective target sizes of genes, which acknowledges that mutation rate varies across the genome. By sequencing over 200 loss-of-function mutations of *ura3* and *can1*, I calculate the effective target sizes for these genes. Chapters 4 and 5 use the improvements to the fluctuation assay described in Chapter 2 to investigate mutation rate variation. The basis for Chapter 4 is an experiment in which 43 strains were generated where the *URA3* reporter was integrated at a different location in each strain, approximately every 3.8 kilobases along Chromosome VI. The results from this experiment show that (1) the mutation rate varies 6-fold across this chromosome, (2) mutation rate is clustered such that Chromosome VI is divided into three regions of length 50 to 100 kilobases of relatively uniform mutation rate, and (3) mutation rate is correlated with replication timing. The correlation between replication timing and mutation rate is discussed with reference to a new model regarding the temporal
segregation of two modes of DNA damage tolerance during replication: error-free DNA damage tolerance and translesion synthesis. In addition to mutation rate variation across the genome, I have investigated variation between strain backgrounds, variation between environments, and variation with the duration of the cell cycle. These experiments are described in Chapter 5. Chapter 6 summarizes my work and puts it in the context of the work described above. In addition, I lay out what I believe are the important unanswered questions regarding mutation rates, how my data have bearing on these questions, and where possible, I provide experiments aimed at addressing these questions.
Chapter 2

Improving the performance and analysis of fluctuation assays

2.1 Materials and methods

Strains and media
Fluctuation assays
Analysis of fluctuation data
Computational Analysis

2.2 Methods for measuring mutation rate

2.3 Fluctuation assays

Performing fluctuation assays
Analyzing fluctuation data 1: Post-plating growth on 1 x canavanine
Analyzing fluctuation data 2: Quality of data

2.4 Phenotypic mutation rates
Abstract

Mutation rate is an important parameter in evolution. It limits the speed of adaptation in populations with beneficial mutations; in the absence of beneficial mutations it sets the equilibrium fitness of the population. Despite its importance, there are large uncertainties in estimates of the per-genome per-generation mutation rate. Estimating this parameter is typically a three-step process: determining the mutation rate to a particular phenotype, converting this phenotypic rate into a per-base-pair mutation rate in a particular gene and extrapolating this local rate to the entire genome. In this chapter, I focus on the technical challenge of accurately determining phenotypic mutation rates. I have improved the execution and analysis of the fluctuation assay and have developed methods for asking whether observed data is derived from a Luria-Delbrück distribution. I find that the phenotypic mutation rates to 5FOA, canavanine, and α-factor resistance to be 5.43 x 10^{-8}, 1.52 x 10^{-7}, and 3.07 x 10^{-6} per genome per generation.

2.1 Materials and methods

Strains and media: GIL104 is a haploid yeast strain derived from the W303 background with genotype URA3, leu2, trp1, CAN1, ade2, his3, bar1Δ::ADE2, MATa. Yeast were grown in either complete synthetic media (SC), complete synthetic media without uracil (SC-Ura), or complete synthetic media with only 1% glucose (SCLG).

Fluctuation assays were plated onto four types of selective media: 1 x canavanine (complete synthetic media without arginine [SC-Arg], 60 mg/L l-canavanine, Sigma-Aldrich, St. Louis, MO), 10 x canavanine (SC-Arg, 0.6 g/L l-canavanine), 5FOA (SC-Ura, 1 g/L 5FOA, Sigma-Aldrich, St. Louis, MO), and α-factor (YPD [Yeast Extract,
Peptone, Dextrose], 10 mg/L αF, Bio-Synthesis, Lewisville, TX). 5FOA is nontoxic, but can be converted into toxic 5-fluoro-uracil by the uracil biosynthesis pathway. The product of the \(URA3 \) gene catalyzes a key step in this process; therefore, 5FOA predominantly selects for \(ura3 \) loss-of-function mutants. Canavanine is a toxic arginine analog, whose uptake requires the arginine transporter. Canavanine selects for loss-of-function mutants of this transporter, which is encoded by the \(CAN1 \) gene. α-factor is a peptide pheromone secreted by mating-type α (\(MATα \)) cells. Binding of the pheromone to the Ste2 receptor on a \(MATα \) cell signals through a MAP-kinase cascade to initiate the mating response genes and a G1-arrest [21]. Wild-type \(MATα \) cells secrete a protease, Bar1, which degrades α-factor; deleting \(BARI \) prevents growth on media containing α-factor and allows us to measure the rate of resistance to α-factor using the fluctuation assay. There are at least ten genes whose loss-of-function results in α-factor resistance; therefore, the mutation rate to α-factor resistance is expected to be an order of magnitude higher than the mutation rates to 5FOA and canavanine resistance.

Fluctuation assays: Fluctuation assays were performed on ten clones of GIL104 to determine the rate at which cells mutated to become resistant to 5FOA, 10 x canavanine, or α-factor. Media and culture volumes were chosen such that a similar number of mutants would be counted for each phenotype: 200 μl of SC, 100 μl SC, and 10 μl of SCLG for resistance to 5FOA, 10 x canavanine, and α-factor, respectively.

To begin each fluctuation assay, a single clone was grown overnight to saturation in SC-Ura, diluted 1:10,000 in into the appropriate media, and dispensed into 96-well plates (Figure 2-1b). This represents initial innocula of approximately 2000, 1000, and 200 cells for the cultures assayed for mutations to 5FOA, 10 x canavanine, and α-factor.
Figure 2-1. The fluctuation assay. During the growth of a culture the number of mutation events will follow the Poisson distribution; however, the number of mutants per culture will have a larger variance. (A) Each of the three cultures had two mutation events occur during growth; however, the number of mutant cells varies depending upon when during growth the mutations arose. (B) To perform the fluctuation assay, an overnight culture is diluted 1:10,000 and distributed into 96 parallel cultures. Each culture is plated on selective media to determine the distribution of the number of mutants per culture (the Luria-Delbrück distribution). When a mutation event occurs early in the growth of a culture it leads to a jackpot (A, middle panel; B, the culture with 107 mutants).
resistance. Cultures were grown for two days at 30° without shaking (only one day for the low glucose cultures, which saturated after one days growth) and re-suspended using a Titramax 1000 orbital shaker (Rose Scientific Inc, Cincinnati, OH) prior to plating. Twenty-four cultures were pooled, diluted, and counted in triplicate using a Beckman Coulter particle counter (Beckman Coulter, Fullerton, CA) to determine the average number of cells per culture. The remaining 72 cultures were spot plated onto over-dried plates to select for mutants: 200 µl cultures were spotted onto 12 5FOA plates (six spots/plate, Figure 2-2); 100 µl cultures were spotted onto eight 10 x canavanine pates (nine spots/plate, Figure 2-3); 10 µl cultures were brought up to 100 µl with sterile water and spotted onto eight 10 x canavanine plates (nine spots/plate). A Tecan Genesis liquid handler (Tecan US, Durham, NC) was used to semi-automate spot plating. In preparation for spot plating, the plates were over-dried by pressing a Whatman filter paper (Grade 3, 90 mm) onto the plates using a replica plating block and allowing the filter to remain in place for at least 30 min. The filters remove approximately 1 mL of liquid and plates can be used for several days after filters have been removed.

Plates were allowed to dry overnight at room temperature, then incubated at 30° for one, two, or five days for αF, 10 x canavanine, and 5FOA, respectively, after which time the number of mutants per spot was counted using a dissection microscope. For 10 x canavanine and α-factor plates I used a size threshold: colonies smaller than 1 mm at 10 x magnification for canavanine or 3 mm at 6 x magnification for α-factor were presumed to result from mutations that had occurred after the cells were plated and were not counted. The choice of the size cutoff was based on looking for a natural break in the colony size distribution. However, the size distribution was not bimodal; therefore, it is
Fluctuation assay on 5FOA. 72 200 µL cultures were spot-plated onto 12 5FOA plates. Colonies were counted after five days of growth.
Figure 2-3. Fluctuation assay on 10 x canavanine. 72 100 μL cultures were spot-plated onto eight canavanine plates. Colonies were counted after two days of growth.
reasonable to assume that some leaky mutants were excluded. This is clear when I observe jackpots of mutants smaller than the size threshold, which were excluded from the analysis. For this reason, it is important that the strains I sequenced to determine target size were selected off of the plates from the fluctuation assays so that any leaky mutants, which were excluded from the determination of mutation rates, were also excluded from the calculation of target size. Fluctuation assays for resistance to 1 x canavanine were performed similarly to those for 10 x canavanine except 1 x canavanine plates were counted three days post plating.

Analysis of fluctuation data: Fluctuation data were analyzed by the Ma-Sandri-Sarkar maximum likelihood method in which the data are fit to a model of the Luria-Delbrück distribution based upon a single parameter \(m \), the expected number of mutation events per culture [112]. Mutation rate is calculated from the equation \(\mu = m/N \), where \(N \) is the average number of cells per culture (approximately equal to the number of cell divisions per culture since the initial inoculum is much smaller than \(N \)). Ninety-five percent confidence intervals on \(m \) and \(\mu \) were assigned using equations 24 and 25 from [107].

The data were also fit to a two-parameter model that accounts for post-plating growth and mutation. This model is a Luria-Delbrück distribution combined with a Poisson distribution with a rate \(N \mu d = md \), where \(d \) is the mean number of cell divisions (in which mutants could occur and be detected) in the lineage of cells that were plated on the selective plates; \(d \) can be related to the number of generations of growth post plating \((g)\) by \(d = 2^g - 1 \). The probability distribution for the number of mutants per culture in the two-parameter model is thus the joint distribution of the Luria-Delbrück (parameter \(m \))
and the Poisson (parameter $n = md$); the m’s are the same assuming that the mutation rate is the same for the post-plating cell divisions. Akaike’s information criterion was used to determine which model best fits each fluctuation assay while using the fewest free parameters.

Computational Analysis: The Ma-Sandri-Sarkar maximum likelihood analysis and the two-parameter fitting was performed in Matlab (The MathWorks, Natick, MA). Fitting to the two-parameter model was achieved by optimizing m (with d fixed), optimizing d (with m fixed) and repeating this process until convergence. Akaike’s information criterion (AIC) was used to determine which model best fits the data [1]. AIC is calculated as $2P – 2(lnL)$ where L likelihood of observing the data given the best-fit parameters and P is the number of free parameters. The model that provides the lowest AIC score is the preferred model. Matlab was also used to simulate fluctuation data, calculate the sum-of-the-square differences between Luria-Delbrück distributions and data.

2.2 Methods for measuring mutation rate

Three methods are commonly employed to measure phenotypic mutation rates: mutation accumulation assays, mutant accumulation assays, and fluctuation assays. The mutation accumulation assay involves passing a culture through recurrent bottlenecks, ideally of a single cell/individual, such that all mutations are nearly neutral. This is useful for determining the rate of mutations effecting fitness since repeated bottlenecks will reduce the effect of selection [54, 142]. This method works well in multicellular organisms, where the population size can be maintained at the bottleneck; however, in
microorganisms, where a visible colony must be allowed to form, selection will still occur between the bottlenecks. Several methods are available for estimating phenotypic mutation rates from mutation accumulation assays [34]; alternatively, direct sequencing can be used since all mutations occur in the same genome [16, 40].

In the mutant accumulation assay, the frequency of a neutral phenotype is monitored in an exponentially growing culture by periodically plating an aliquot of the culture onto selective media. Once the population reaches a size such that the probability of a new mutation occurring in the next generation is approximately one, the frequency of mutants will increase linearly with time. An accurate estimate of phenotypic mutation rate requires a long period of time between frequency measurements, making these experiments vulnerable to beneficial mutations, which are more likely to occur in the non-mutant population and slow the accumulation of mutants.

In the fluctuation assay, many parallel cultures are inoculated with a small number of cells, grown under non-selective conditions, and plated to select for mutants [75]. The number of mutations that arise in each culture will follow the Poisson distribution; however, the number of mutant cells per culture will vary greatly since early mutations will lead to “jackpots,” cultures that contain a great many mutant individuals.

The simplest way to estimate the expected number of mutations that occur in each culture (m) is from the fraction of cultures with zero mutants, which should be equal to e^{-m}. Luria and Delbrück used this method (the P_0 method) in the original paper describing the fluctuation assay [75]. The full distribution of mutants per culture (the Luria-Delbrück distribution) can be described by a set of recursive equations [76]. The most accurate method for estimating m (Ma-Sandri-Sarkar maximum likelihood) finds the m
that gives the best fit of the Luria-Delbrück distribution to the data [107, 112]. By simulation, Stewart calculates 95% confidence intervals for m obtained using this method [125]; however, for the confidence intervals to be meaningful, the data must follow the Luria-Delbrück distribution.

One way to estimate the quality of data is to plot the cumulative distribution of mutant frequencies on a log-log plot; Luria-Delbrück-distributed data presented in this way will produce a straight line with slope -1 [107]. Deviations from linearity show that the data do not approximate a Luria-Delbrück distribution. This graphical approach ignores jackpots (since they lie far off the line) and cultures with zero mutants (due to the log transformation).

2.3 Fluctuation assays

The accuracy of mutation rate estimates from fluctuation assays depends on how the experiment is performed and how the data are analyzed. I have made improvements to both and will consider with each in turn.

Performing fluctuation assays: One way to increase the accuracy of mutation rate estimates from fluctuation assays is to increase the number of cultures [125]. Typically fluctuation assays are performed in test tubes; however, in order to increase the throughput, I perform the assays in 96-well plates. I plate 72 of the cultures to selective media to determine the number of mutants per culture; the remaining 24 are used to determine the average number of cells per culture (see Methods). Using the 96-well format I can vary the culture volume from 10 to 200 µl and can measure mutation rates over two orders of magnitude (Table 2-2).
Rather than spreading cultures onto selective media, I spot cultures onto over-dried plates, where they spread uniformly over an area of 1.3 to 3 cm², depending on the volume spotted. This increases efficiency and reduces the number of plates since up to nine cultures can be spotted onto one plate.

The combination of spot plating and the 96-well format allow for automation of the fluctuation assay. To demonstrate this, I semi-automated the process using a liquid handler; this enabled me to perform all fluctuation assays described here—the equivalent of three 720-tube fluctuation assays—in parallel.

Analyzing fluctuation data 1: Post-plating growth on 1 x canavanine: There are many methods for calculating mutation rates from fluctuation data [30] of which the Ma-Sandri-Sarkar maximum likelihood method is preferred because it is the most accurate, it is valid for any range of the expected number of mutation events per culture (m), and 95% confidence intervals can be calculated by an empirically determined set of equations [107, 125]. In order for estimates of mutation rates and 95% confidence intervals generated from this method to be accurate the data must approximate the Luria-Delbrück distribution.

I tested this approximation by using the Ma-Sandri-Sarkar maximum likelihood method to estimate m and then plotting the predicted cumulative frequency distribution of mutants against the experimental data. Fluctuation assays on 5FOA produced close agreement between predicted and observed distributions (Figure 2-4). In contrast, assays on 1 x canavanine and αF produced data that deviates significantly from the Luria-Delbrück distribution. Compared to the expected distribution, cultures with a small number of mutants are underrepresented and cultures with many mutants are
Figure 2-4. Fitting data from fluctuation assays. Four 72-tube fluctuation assays using GIL104 Clone A plated were plated onto 1 x canavanine, 5FOA, 10 x canavanine, and α-factor. Black circles show the cumulative distribution of the data. Solid curves indicate the cumulative Luria-Delbrück (one-parameter model) distributions fit to the data with parameter $m = 4.80, 1.31, 2.82, \text{and } 1.97$ for 1 x canavanine, 5FOA, 10 x canavanine, and α-factor, respectively. The broad shaded curve is the two-parameter model of post-plating growth fit to the data with $m = 2.31, d = 2.62; m = 2.39, d = 0.37;\text{ and } m = 1.10 \text{ and } d = 1.42$ for 1 x canavanine, 10 x canavanine, and α-factor, respectively. The one-parameter and two-parameter models are the same for 5FOA. Using Akaike’s information criterion (Akaike 1974), the 5FOA and 10 x canavanine fluctuation assays are best described by the one-parameter model; whereas, the 1 x canavanine and α-factor fluctuation assays are best described by the two-parameter model.
overrepresented in the 1 x canavanine experiment (Figure 2-4, one-parameter model). This deviation can be explained as the combination of a Luria-Delbrück distribution and a Poisson distribution.

One possible explanation is that canavanine-sensitive cells can divide and give rise to canavanine-resistant mutations after they have been plated; the number of additional mutant colonies will follow the Poisson distribution. I fit the distribution of mutant frequencies to a two-parameter model that incorporating post-plating growth and mutation. This model is the joint distribution of a Luria-Delbrück distribution (with parameter m) and a Poisson distribution (with parameter $n = md$). The data from 1 x canavanine fit better to the two-parameter model (Figure 2-4).

I quantified the improvement of the fit by calculating the sum-of-the-squared differences between the cumulative distribution of the data and the theoretical curve for both models. I define the improvement of fit as the decrease in the sum-of-the-square differences between the one-parameter and the two-parameter models. The two-parameter model will always fit the data as well or better than the one-parameter model; therefore, Akaike’s information criterion (AIC) was used to determine whether the increase in fit justifies the additional parameter.

For fluctuation assays on 1 x canavanine, the sum-of-the-square differences for the one-parameter model and the two-parameter model are 1.27 and 0.13, giving an improvement of 1.14. By AIC, the data is best fit by the two-parameter model. For fluctuation assays on 5FOA, there is no improvement of fit using the two-parameter model. To minimize post-plating mutation I increased the canavanine concentration 10-fold and counted the plates one day earlier. Although the two-parameter model still gives
a slightly better fit (Figure 2-4, improvement of fit 0.09), according to AIC, the data are best fit by the one-parameter model. For the fluctuation assay on αF, the data are best fit by the two-parameter model with an improvement of fit of 0.26; however, both models fail to capture all features of this distribution (Figure 2-4).

Analyzing fluctuation data 2: Quality of data: The Ma-Sandri-Sarkar maximum likelihood method is the most accurate method for estimating the expected number of mutants per culture (m) from fluctuation data; however, this method assumes that the data follow the Luria-Delbrück distribution. I have shown that post-plating proliferation and mutation of canavanine-sensitive cells on 1 x canavanine plates can be detected since it produces a deviation from the expected Luria-Delbrück distribution. If the data are not corrected, this leads to an overestimation of the mutation rate. One can correct for this by fitting the data to a two-parameter model that accounts for post-plating growth or largely eliminate it by increasing the concentration of canavanine. Other processes that introduce error into mutation rate estimates such as differential growth rates between mutants and non-mutants [143] and poor plating efficiency [124, 126] will also produce deviations from the expected Luria-Delbrück distribution. Therefore, I suggest that fitting fluctuation data to the cumulative distribution and comparing the sum-of-the-square differences with simulated data should be used as a general method for assaying the quality of data resulting from fluctuation assays.

I can assign significance to deviations from the Luria-Delbrück distribution by simulation. Data from the 1 x canavanine fluctuation assay (Figure 2-4) give a maximum likelihood value of m = 4.80 and a sum-of-the-square differences = 1.27 for the one-parameter model. To determine the expected sum-of-the-square differences, I simulated
10,000 72-tube fluctuation assays by sampling from the Luria-Delbrück distribution with $m = 4.80$ and calculated the sum-of-the-square differences for each simulated experiment. I find that only 3.5% of the simulated experiments have a poorer fit to the Luria-Delbrück distribution than the observed 1 x canavanine data compared to 30% and 41% for 10 x canavanine and 5FOA respectively.

2.4 Phenotypic mutation rates

Fluctuation assays were performed to determine mutation rates to α-factor, 10 x canavanine, and 5FOA resistance for ten isogenic clones of a strain from the W303 background (GIL104); the data were analyzed using the one-parameter and two-parameter models (Table 2-1 and Table 2-2, respectively). All fluctuation assays on αF and six of the ten fluctuation assays on 10 x canavanine are best described by the two-parameter model. Whereas, all fluctuation assays on 5FOA and four of the ten fluctuation assays on 10 x canavanine are best described by the Luria-Delbrück distribution (the one-parameter model).

Using the combined data from the 10 clones (effectively a fluctuation assay with 720 parallel cultures) and the two-parameter model I determine phenotypic mutation rates to α-factor, 10 x canavanine, and 5FOA resistance to be 3.07×10^{-6}, 1.52×10^{-7}, and 5.43×10^{-8}, respectively. For 5FOA resistance, the data are best described by the one-parameter model ($d = 0$ for the two-parameter model, meaning that post-plating growth and mutation does not occur); therefore, I can use equations 24 and 25 from [107] to assign a 95% confidence interval to my estimate of mutation rate. This yields a confidence interval of 5.00 to 5.93×10^{-8} per generation (Table 2-2). For the two-
Table 2-1. Per-genome per-generation mutation rates for ten clones of GIL104

<table>
<thead>
<tr>
<th>Clone</th>
<th>Mutation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-factorR (x 10$^{-6}$)</td>
</tr>
<tr>
<td>A</td>
<td>5.51 (4.47-7.03)</td>
</tr>
<tr>
<td>B</td>
<td>5.51 (4.47-7.02)</td>
</tr>
<tr>
<td>C</td>
<td>6.28 (5.13-7.92)</td>
</tr>
<tr>
<td>D</td>
<td>6.58 (5.40-8.26)</td>
</tr>
<tr>
<td>E</td>
<td>5.60 (4.55-7.11)</td>
</tr>
<tr>
<td>F</td>
<td>6.07 (4.97-7.65)</td>
</tr>
<tr>
<td>G</td>
<td>5.35 (4.36-6.78)</td>
</tr>
<tr>
<td>H</td>
<td>6.05 (4.95-7.63)</td>
</tr>
<tr>
<td>I</td>
<td>6.00 (4.91-7.56)</td>
</tr>
<tr>
<td>J</td>
<td>5.50 (4.49-6.95)</td>
</tr>
<tr>
<td>Avg ± Stdev</td>
<td>5.85 ± 0.41</td>
</tr>
<tr>
<td>Combined</td>
<td>5.86 (5.48-6.29)</td>
</tr>
</tbody>
</table>

Parentheses indicate the 95% confidence intervals calculated using equations 24 and 25 from Rosche and Foster (2000). The combined data set treats the ten 72-tube fluctuation assays as one 720-tube fluctuation assay.
Table 2-2. Fitting data to a two-parameter model of post-plating growth

<table>
<thead>
<tr>
<th>Clone</th>
<th>α-factor resistance</th>
<th>Canvanine resistance</th>
<th>5FOA resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mut. rate x 10^6</td>
<td>Div. post plating</td>
<td>Mut. rate x 10^7</td>
</tr>
<tr>
<td>A</td>
<td>3.07</td>
<td>1.42</td>
<td>1.76</td>
</tr>
<tr>
<td>B</td>
<td>3.66</td>
<td>0.95</td>
<td>1.16</td>
</tr>
<tr>
<td>C</td>
<td>4.17</td>
<td>0.96</td>
<td>1.5</td>
</tr>
<tr>
<td>D</td>
<td>2.89</td>
<td>2.45</td>
<td>1.19</td>
</tr>
<tr>
<td>E</td>
<td>2.14</td>
<td>2.74</td>
<td>1.53</td>
</tr>
<tr>
<td>F</td>
<td>3.34</td>
<td>1.48</td>
<td>1.46</td>
</tr>
<tr>
<td>G</td>
<td>2.94</td>
<td>1.46</td>
<td>1.69</td>
</tr>
<tr>
<td>H</td>
<td>2.61</td>
<td>2.32</td>
<td>1.88</td>
</tr>
<tr>
<td>I</td>
<td>2.56</td>
<td>2.45</td>
<td>1.48</td>
</tr>
<tr>
<td>J</td>
<td>3.36</td>
<td>1.17</td>
<td>1.55</td>
</tr>
<tr>
<td>Avg ± Stdev</td>
<td>3.07 ± 0.59</td>
<td>1.74 ± 0.68</td>
<td>0.26 ± 0.06</td>
</tr>
<tr>
<td>Combined</td>
<td>3.07</td>
<td>1.66</td>
<td>1.52</td>
</tr>
</tbody>
</table>

The mutation rates are the phenotypic mutation rates per genome per generation.

* The combined data set treats the ten 72-tube fluctuation assays as one 720-tube fluctuation assay.

The improvement of fit is a measure of how much better the data fit to the two-parameter model, which incorporates post plating growth and mutation, than to the one-parameter model, where all mutants arose during the growth of the culture. For both models we calculate the sum-of-the-squared differences between the cumulative distribution of the data and the best-fit curve. We define the improvement of fit as the decrease in the sum-of-the-square differences between the one-parameter and the two-parameter models.

† Fluctuation assays where the two-parameter model is accepted over the one-parameter model by Akaike information criterion (see text and Akaike 1974).
parameter model I determined confidence intervals by simulation. For each combined 720-culture fluctuation assay I determined the most-likely values for m and d, given the data. In order to gauge the expected variation in these parameters, I simulated 1000 fluctuation assays by sampling the combined Luria-Delbrück/Poisson distribution using parameters determined from the data (Figure 2-5). I take the 95% confidence intervals for my estimates of m to be the values of m that encompass 95% of the simulated experiments. From this I calculate the 95% confidence intervals on the two-parameter model to be 2.65×10^{-6}, 1.34×10^{-7}, and 4.78×10^{-8} for α-factor, 10x canavanine, and 5FOA resistance, respectively.
Figure 2-5. Simulation of fluctuation assays. To determine confidence intervals for values of m generated from the two-parameter model, 1000 720-tube fluctuation assays were simulated using the values for m and d estimated from the combined fluctuation assays (indicated by the large symbols; $m = 2.04$, $d = 0.57$, $m = 1.11$, $d = 0$, $m = 1.15$, $d = 1.66$ for 10 x canavanine, 5FOA, and α-factor, respectively). For each simulated fluctuation assay the most likely values for m and d were calculated using the two-parameter model (small symbols).
Chapter 3

Effective target size and the per-base-pair mutation rate

3.1 Materials and methods
 - Sequencing of ura3 and can1 mutants
 - Computational Analysis

3.2 Mutational spectra
 - Determining mutational spectra
 - Analyzing mutational spectra
 - Per-base-pair rate of nonsense mutations

3.3 Effective target size
 - Definition of effective target size
 - Calculation of effective target size and the per-base-pair mutation rate
 - Discussion of effective target size
 - Target size for mutations conferring resistance to α-factor

3.4 Mutation rate per base pair per generation
Abstract

In order to convert phenotypic mutation rates into per-base-pair mutation rates one needs to estimate the effective target size for phenotypic mutation. Although the concept of effective target size is important in evolutionary theory—it links the mutation rate to a particular phenotype to the mutation rate per genome per generation—it has not been explicitly defined. In this chapter, I propose a definition of effective target size that illustrates the relationship between phenotypic and genomic mutation rates, shows where uncertainties in estimates of genomic mutation rate arise, and provides a method for calculating this parameter from experimental data. Combining the estimates effective target size for loss-of-function at \textit{URA3} and \textit{CAN1} with the phenotypic mutation rates in Chapter 2, I conclude that the per-base-pair mutation rate at \textit{URA3} and \textit{CAN1} is 3.80×10^{-10} and 6.44×10^{-10} per base pair per generation, respectively, suggesting that the mutation rate varies across the yeast genome.

3.1 Materials and methods

\textit{Sequencing of ura3 and can1 mutants:} Table 3-1 lists the primers that were used to amplify and sequence the \textit{ura3} and \textit{can1} alleles from 5FOA and 10 x canavanine resistant colonies, respectively. Prior to the isolation of genomic DNA, 5FOA and 10 x canavanine resistant colonies were restreaked on selective media.

\textit{Computational Analysis:} Matlab was used to bootstrap estimates of effective target sizes to generate 95% confidence intervals. Yeast coding and non-coding sequences were downloaded from ftp site of the \textit{Saccharomyces} genome database (http://www.yeastgenome.org, orf_coding.fasta.gz and NotFeature.fasta.gz). Each file
Table 3-1. Primers used in Chapter 3

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>URA3extF</td>
<td><code>5’ ATCAAGAAGATTTATGTA 3’</code></td>
<td>PCR</td>
</tr>
<tr>
<td>URA3extR</td>
<td><code>5’ TCATTATAGAAATCTACACG 3’</code></td>
<td>PCR/Sequencing</td>
</tr>
<tr>
<td>URA3extF3</td>
<td><code>5’ TTGATTCGGTAATCTCCGAG 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>URA3intF2</td>
<td><code>5’ TGGGCAACATTACGAATGC 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>URA3intR2</td>
<td><code>5’ CAAACAGCTAACAATACCTG 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>CAN1extF2</td>
<td><code>5’ TCCTCAGACTTCTTAACTCC 3’</code></td>
<td>PCR</td>
</tr>
<tr>
<td>CAN1extR2</td>
<td><code>5’ ATAGTAAGCTCATTGATCCC 3’</code></td>
<td>PCR/Sequencing</td>
</tr>
<tr>
<td>CAN1ext/intF1</td>
<td><code>5’ AAAAAAGGCATAGCAATGAC 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>CAN1intF2</td>
<td><code>5’ GACGTACAAAGTTCCACTGG 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>CAN1intF3</td>
<td><code>5’ TCAAGAACAAGTTGGCTCC 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>CAN1intR2</td>
<td><code>5’ TAGATGTCTCCATGTAAGCC 3’</code></td>
<td>Sequencing</td>
</tr>
<tr>
<td>CAN1intR3</td>
<td><code>5’ AACTTGTGGAGAGCGACC 3’</code></td>
<td>Sequencing</td>
</tr>
</tbody>
</table>
was concatenated into one string and the coding sequence was shuffled to generate the randomized coding sequence. To calculate the frequency distribution for motifs of length \(x \), bases 1 through \(x \) and were used as a query and searched for the next occurrence of that sequence starting at base \(x+1 \). The search was terminated once a match was found or if there was no match within 150 base pairs. This process was reiterated for bases 2 through \(x+1 \), 3 through \(x+2 \), and so on, until the end of the sequence was reached.

3.2 Mutational spectra

Determining mutational spectra: I wanted to convert the phenotypic mutation rates to per-base-pair mutation rates. The raw material for this conversion is the mutational spectra; from the fluctuation assays in Chapter 2, I sequenced 237 \(\text{ura3} \) alleles and 227 \(\text{can1} \) alleles from 5FOA and 10 x canavanine resistant strains, respectively. Thirty 5FOA resistant mutants contain wild-type \(\text{URA3} \) alleles; 29 of these mutants are uracil prototrophs. It has been reported that mutations in \(\text{FUR1} \) can confer this phenotype; however, I failed to find any mutations within the coding sequence of this gene for any of the 29 5FOA resistant uracil prototrophs (data not shown). None of the 207 \(\text{ura3} \) mutants are prototrophic, and each contains a single mutation or two mutations within a few nucleotides. There are 167 base-pair substitutions (64 nonsense and 103 missense), 22 single-base-pair deletions, three two-base-pair deletions, three single-base-pair insertions, one three-base-pair insertion, two large tandem duplications and nine double mutations (Figure 3-1). All 227 10 x canavanine resistant mutants contain a single mutation or closely adjacent mutations at the \(\text{CAN1} \) locus. I find 150 base-pair substitutions (70 nonsense and 80 missense), 55 single-base-pair deletions, eight single-
Figure 3-1. Mutational spectra for 5FOA resistant *ura3* mutants. 207 mutations are shown. Black text represents missense mutations; white text on a black background represents nonsense mutations. A horizontal line separates different mutations at the same codon. Complex mutational events such as large duplications and multiple mutations in the same strain are indicated below the nucleotide sequence.
Base pair substitutions

ATG ACG AAC ATC TCA AAA GAA GAC GCC GTA AAG GGT TTC GCT CTG ACG CTA GAA ACA GAC CAC AGA GTG

ATG ACG AAC ATC TCA AAA GAA GAC GCC GTA AAG GGT TTC GCT CTG ACG CTA GAA ACA GAC CAC AGA GTG

Insertion/deletion and complex mutations

Double

Figure 3-2. Mutational spectra for canavanine resistant can1 mutants. Continued on next page.
Figure 3-2 (continued). Mutational spectra of canavanine resistant *can1* mutants. 227 mutations are shown. Black text represents missense mutations; white text on a black background represents nonsense mutations. A horizontal line separates different mutations at the same codon. Complex mutational events such as large duplications and multiple mutations in the same strain are indicated below the nucleotide sequence.
base-pair insertions, one two-base-pair insertion, ten double mutations, and three
complex mutations including a can1 allele containing a 27 base pair deletion and a 30-
base-pair tandem duplication (Figure 3-2).

Analyzing mutational spectra: I sequenced 237 5FOA resistant ura3 alleles and
227 10 x canavanine resistant can1 alleles in order to determine the locus-specific
effective target size for phenotypic mutations. From these data sets one can garner
additional information regarding the mutagenic processes leading to loss of function at
URA3 and CAN1. Nonsense mutations represent a larger fraction of base pair
substitutions in the can1 data set (47% versus 38%). This indicates that a larger fraction
of missense mutations cause loss of function for URA3 (10.9% versus 6.8% as calculated
by dividing the number of possible loss-of-function missense mutations by the number of
possible missense mutations). This difference is reflected in my calculation of locus-
specific effective target size where, although the coding sequence of CAN1 is 2.2 times
larger, the effective target size for loss of function by way of base-pair substitutions is
only 1.6 times larger (see below). Loss-of-function mutations in the mutational spectra
are overrepresented at conserved residues (p = 1.5 x 10^-5, Wilcoxon rank-sum, A. Singhal
and A. Segre, data not shown). In my compiled URA3 and CAN1 mutational spectra I
identified 88 single base-pair insertions/deletions in which deletions were
overrepresented by 7:1 (p < 0.001, Chi-square).

There are two ways I can test whether mutations occur randomly within the target
sequences. Since I know every position where a nonsense mutation can occur I can ask if
mutations fall randomly over these sites. When looking at the distribution of nonsense
mutations I assume that all nonsense mutations result in loss of function. For URA3 this
assumption is reasonable since the data set includes a nonsense mutation eight amino acids before the stop codon removing the last 1% of the protein. Dividing the *URA3* and *CAN1* sequences into fifths I find that the observed number of nonsense mutations in each region does not differ significantly from expectation (*URA3*: observed, 10, 10, 19, 10, 15; expected, 13, 12, 12, 11, 16, \(p > 0.05 \), Chi-square; *CAN1*: observed, 10, 18, 17, 14, 11; expected, 14, 15, 13, 13, 15, \(p > 0.05 \), Chi-square).

In addition, I can test for mutational hotspots/coldspots by asking if the number of times I found a given base-pair substitution deviates from what I would expect from binomial sampling. For *URA3* the number of mutations I identified 0, 1, 2, 3, or 4 times is 206, 71, 18, 12, and 6. This deviates significantly from the expectation of binomial sampling (184, 98, 26, 5, and 1; \(p < 0.01 \), Chi-square). Similarly, for *CAN1* the number of mutations I identified 0, 1, 2, 3, or 4 times is 373, 91, 20, 5, and 1, which deviates significantly from binomial sampling (360, 111, 17, 2, and 0; \(p < 0.05 \), Chi-square).

Therefore, although I do not see regional biases in the mutational spectra I do find particular substitutions to be over/under-represented, possibly reflecting biases due to local sequence context effects. The variation I find in the yeast *URA3* and *CAN1* genes is significantly less that the degree of variation seen across the *LacI* gene in *E. coli* [84].

I found 20 instances of multiple mutation events occurring in the same strain. One *can1* allele contains a 27 base pair deletion and a 30 base pair imperfect duplication separated by 312 wild-type base pairs. The remaining 20 were multiple mutation events occurring within a few nucleotides of each other; 9 in *ura3* and 11 in *can1* (Table 3-2). In one case the same complex mutation, a double deletion and base-pair substitution, was found in two *can1* strains which were adjacent during much of the processing.
<table>
<thead>
<tr>
<th>Class</th>
<th>Gene</th>
<th>Intervening WT bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution/Substitution</td>
<td>URA3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>2</td>
</tr>
<tr>
<td>Substitution/Deletion</td>
<td>CAN1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>3</td>
</tr>
<tr>
<td>Substitution/Insertion</td>
<td>URA3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CAN1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>URA3</td>
<td>3</td>
</tr>
<tr>
<td>Double Deletion/Substitution</td>
<td>CAN1</td>
<td>8</td>
</tr>
<tr>
<td>Insertion/Deletion</td>
<td>CAN1</td>
<td>312</td>
</tr>
</tbody>
</table>
(restreaking, genomic DNA preparation, PCR, and sequencing); therefore, this may represent a single event which was inadvertently sampled twice. Half of the multiple mutation events are interspersed with one or more bases of wild type sequence; therefore, multiple mutation events must have occurred. These events may represent instances where lesion bypass has occurred and the multiple mutations result from decreased fidelity of translesion polymerases [44]. The translesion polymerase Polζ can efficiently extend unpaired primer termini resulting from incorporation opposite a lesion and it is thought that up to half of all spontaneous mutations occur in a Polζ-dependent manner [61, 104, 106].

Four large insertion/deletion mutations were found. These include tandem duplications of 24 and 57 base pairs in URA3, and a 30-base-pair tandem duplication and a 27-base-pair deletion in the same can1 mutant. In addition, in another sequencing experiment (Chapter 5), an additional 18-base-pair tandem duplication was identified. All five mutations are flanked by 4 to 6 base pair repeats (or imperfect repeats) and result in in-frame insertions/deletions. One might assume that the probability of an event between nearby repeats leading to an in-frame mutations is 1/3; therefore the probability of detecting five in-frame mutations is \((1/3)^5 = 0.4\% \). However, due to constraints on amino acid and codon usage, particular nucleotide motifs may be overrepresented in one of the three frames resulting in events between tandem repeats being more likely to result in in-frame mutations than expected. I tested this using three data sets: a concatenated string consisting of all yeast coding sequences (8,755,812 base pairs), a concatenated string consisting of all yeast non-coding sequences (3,091,831 base pairs), and a string consisting of the shuffled sequence of all yeast coding sequences (8,755,812 base pairs).
In each data set I determined the distance between sequence motifs. For each sequence motif along a string I determined the distance to the next occurrence of that sequence. For yeast coding sequences (but not non-coding or randomized coding sequences) the frequency distribution for the distances between nearest occurrences of a given motif is punctuated at every third position (Figure 3-3) resulting for a 43% chance that events between 4 base pairs motifs will result in an in-frame mutation. The in-frame probability increases with motif length and is above 50% for motifs greater that 5 base pairs (Figure 3-3).

Per-base-pair rate of nonsense mutations: From the results thus far, I can calculate the per-base-pair mutation rate to nonsense mutations at the *CAN1* and *URA3* genes. First I need to correct the phenotypic mutation rate to 5FOA resistance to take into account that only 207 out of 237 5FOA mutants are *URA3* mutants. This results in a mutation rate for loss of function of 4.75×10^{-8} for *URA3* and 1.52×10^{-7} for *CAN1*. If I multiply these rates by the fraction of nonsense mutations in the mutational spectra I find that the rate of nonsense mutations at *URA3* and *CAN1* is 1.47×10^{-8} and 4.69×10^{-8}, respectively. For *URA3* and *CAN1*, I counted the number of possible nonsense substitutions from the known sequences of these genes. *URA3* is 804 base pairs; therefore, there are 2412 possible substitutions (804 base pairs x 3 possible substitutions per base pair). Of these, 123 result in nonsense mutations. By dividing these rates by the number of possible nonsense substitutions and multiplying by 3, since there are 3 possible mutations at each base, I find that the nonsense mutation rate normalized per base pair is 3.58×10^{-10} for *URA3* and 6.21×10^{-10} for *CAN1*. Repeating the above analysis for all ten fluctuation assays at *CAN1* and *URA3* from Table 3-2 I find that the
Figure 3-3. Probability of in-frame slippage events in the yeast genome. Gaps between repeated six-base-pair sequence motifs in coding sequences are biased towards multiples of three base pairs. Using each six-base-pair sequence motif along concatenated total coding, non-coding, and randomized coding yeast sequences (see methods), we determined the frequency with which we find the next occurrence of the motif at a given position away from the starting sequence. For a given six-base-pair motif in coding sequences (but not non-coding or randomized coding sequences) the next occurrence of the motif is more likely to be found in the same frame than in either of the other two frames. The in-frame probability increases with the sequence motif length. The pronounced peaks at 36 base pairs and 72 base pairs are attributable to an imperfect 36-base-pair subtelomeric repeat found in both coding and non-coding sequences (Horowitz and Haber 1984).
per-base-pair nonsense mutation rates differ significantly at these two loci (Wilcoxon rank-sum, \(p < 1.83 \times 10^{-4}\)). These calculations were performed with mutation rates from the two-parameter model, correcting for post-plating growth and mutation on canavanine plates. Had I used the one-parameter model, the difference in mutation rates between *URA3* and *CAN1* would have been greater, since the one-parameter model overestimates the phenotypic mutation rates to canavanine resistance.

3.3 Effective target size

Definition of effective target size: I define effective target size as the size of the genome, \(G\), multiplied by the probability that introducing a single genomic mutation (this could be a base-pair substitution, insertion/deletion, transposition, etc.) will result in the phenotype of interest:

\[
\tau = G \cdot P\{\text{mutation results in phenotype | mutation in genome}\}.
\]

Thus, the effective target size to canavanine resistance is

\[
\tau_{\text{Can}^R} = G \cdot P\{\text{mutation results in Can}^R | \text{mutation in genome}\}.
\]

One can specify the effective target size given a particular class of mutation. For instance, the target size for mutation to canavanine resistance by way of a base-pair substitution is

\[
\tau_{\text{Can}^R | \text{BPS}} = G \cdot P\{\text{BPS results in Can}^R | \text{BPS in genome}\}.
\]

Furthermore, one can restrict the region of the genome in question to define a locus-specific effective target size. For example, the locus-specific effective target size for canavanine resistance by way of a base-pair substitution at the *CAN1* locus is

\[
\tau_{\text{Can}^R | \text{BPS} | \text{CAN1}} = (1773 \text{ bp}) \cdot P\{\text{BPS results in Can}^R | \text{BPS at CAN1}\}.
\]
were 1773 base pairs is the size of the CAN1 locus. Notice that

\[
\frac{\mu_{\text{Can}^k}}{\tau_{\text{Can}^k}} = \hat{\mu}_{bp} = \frac{U_g}{G},
\]

where \(\mu_{\text{Can}^k}\) is the mutation rate to canavanine resistance, \(\hat{\mu}_{bp}\) is the genome-wide average mutation rate per base pair per generation, and \(U_g\) is the mutation rate per-genome per-generation. Similarly,

\[
\frac{\mu_{\text{Can}^k}}{\tau_{\text{Can}^k}} = \mu_{\text{Can}^1},
\]

where \(\tau_{\text{Can}^k}\) is the locus-specific effective target size for canavanine resistance at the CAN1 locus and \(\mu_{\text{Can}^1}\) is the average mutation rate per base pair per generation at the CAN1 locus. \(\tau_{\text{Can}^k}\) and \(\mu_{\text{Can}^1}\) are related to \(\tau_{\text{Can}^k}\) and \(\hat{\mu}_{bp}\) through the parameter \(\lambda_{\text{CAN}1}\) which is the ratio of the mutation rate at the CAN1 locus compared to the genome-wide average; \(\lambda = 1\) identifies loci where the mutation rate equals the genomic average, loci where \(\lambda < 1\) are coldspots, and those where \(\lambda > 1\) are hotspots:

\[
\lambda_{\text{CAN}1} \cdot \tau_{\text{Can}^k} = \tau_{\text{Can}^k}, \text{ and}
\]

\[
\mu_{\text{Can}^1} = \lambda_{\text{CAN}1} \cdot \hat{\mu}_{bp}.
\]

Calculation of effective target size and the per-base-pair mutation rate: The effective target size to canavanine resistance, \(\tau_{\text{Can}^k}\), is difficult to determine experimentally; however, from mutational spectra I can determine the locus-specific effective target size to canavanine resistance conditioned on a mutation at the CAN1 locus, \(\tau_{\text{Can}^k}\), by rewriting it as

\[
\tau_{\text{Can}^k} = f_{\text{BPS}} \cdot \tau_{\text{Can}^k \mid \text{BPS}} + f_{\text{INDEL}} \cdot \tau_{\text{Can}^k \mid \text{INDEL}},
\]
where f_{BPS} and f_{INDEL} are the frequency with which base pair substitutions and insertion, deletion, or other DNA rearrangements (which I collectively refer to as indels) occur.

Assuming that all indels in CAN1 result in loss of function, $\tau_{\text{Can}^R \mid \text{INDEL}}^{\text{CAN1}}$ is 1773 base pairs.

To determine $\tau_{\text{Can}^R \mid \text{BPS}}^{\text{CAN1}}$, I separated the observed base-pair substitutions into nonsense and missense (70 and 80, respectively). CAN1 contains 226 possible nonsense substitutions 54 of which I found (as expected, some mutations were identified multiple times). The 80 missense mutations represent 63 unique substitutions. Assuming I identified the same proportion of possible missense and nonsense mutations, I can calculate the possible number of missense mutations conferring canavanine resistance as $63(226/54) = 264$. Since there are three possible substitutions at each base, the locus-specific effective target size for canavanine resistance at the CAN1 locus by way of missense and nonsense mutations is $264/3 = 88$ base pairs and $226/3 = 75$ base pairs, respectively. From the CAN1 sequence I know the location of every nonsense mutation. I also know that there are 264 possible missense mutations; however, this method is blind to the locations of mutations other than those identified in the mutational spectra. A locus-specific effective target size for missense mutations of 88 base pairs could represent 88 positions where any of the three possible substitutions causes a phenotype, or 264 positions where only one out of three substitutions causes a phenotype, or something in between.

Combining locus-specific effective target sizes for nonsense and missense mutations I find that

$$\tau_{\text{Can}^R \mid \text{BPS}}^{\text{CAN1}} = 88 \text{ bp} + 75 \text{ bp} = 163 \text{ bp}.$$
This locus-specific effective target size indicates that 163/1773 (9%) of base-pair substitutions at the CAN1 locus result in canavanine resistance. In order to calculate the mutation rate per base pair per generation by way of base-pair substitutions, I need to consider that only 150 of 227 mutations detected at the CAN1 locus were base-pair substitutions; therefore,

\[
\mu_{\text{bp}}^{\text{CAN1}} = 1.52 \times 10^{-7} \frac{150}{227} \text{bp} = 6.15 \times 10^{-10} \text{bp/generation},
\]

I can now calculate the mutation rate per base pair per generation for all mutations. The frequency of base-pair substitutions and indel mutations in the CAN1 mutational spectrum is 150/227 (~66%) and 77/227 (~34%), respectively, but only 9% of base pair substitutions result in canavanine resistance. Thus the fraction of mutations that are substitutions, \(f_{\text{BPS}} \), is actually 0.95 (\(f_{\text{BPS}} = (0.66/0.09)/((0.66/0.09) + 0.34) \)) and those that are indels, \(f_{\text{INDEL}} \), is only 0.05. Using these values, I estimate the locus-specific effective target size to canavanine resistance at the CAN1 locus to be

\[
\tau_{\text{CanR}}^{\text{CAN1}} = (0.95)(163 \text{ bp}) + (0.05)(1773 \text{ bp}) = 236 \text{ bp}; \text{ therefore,}
\]

\[
\mu_{\text{bp}}^{\text{CAN1}} = 1.52 \times 10^{-7} \div 236 \text{ bp} = 6.44 \times 10^{-10} \text{ bp/generation}.
\]

Similar calculations for URA3 show that

\[
\tau_{\text{5FOA}^R \text{BPS}}^{\text{URA3}} = 104 \text{ bp}, \text{ and}
\]

\[
\tau_{\text{5FOA}^R}^{\text{URA3}} = 125 \text{ bp}.
\]

Taking into account that only 207 of the 237 5FOA resistant mutants sequenced were \textit{ura3} mutants, the rate of mutation to 5FOA resistance at URA3 is 4.75 \times 10^8/cell/generation. Thus I calculate

\[
\mu_{\text{bp}}^{\text{URA3}} = 4.75 \times 10^8 \frac{167}{207} \text{ bp} = 3.68 \times 10^{-10} \text{ bp/generation}, \text{ and}
\]
\[\mu_{\text{tp}}^{\text{URA3}} = 4.75 \times 10^{-8} / 125 \text{ bp} = 3.80 \times 10^{-10} / \text{bp/generation}. \]

Discussion of effective target size: The mutation rate per genome per generation is a fundamental parameter in molecular evolution. Here I introduce the effective target size \(\tau \) to phenotypic mutation as a way to link the mutation rate per genome per generation to the measurable phenotypic mutation rate. I have defined effective target size as

\[\tau = G \cdot P\{\text{mutation results in phenotype} \mid \text{mutation in genome}\}. \]

I use a bottom up approach based upon mutational spectra to calculate the effective target size to phenotypic mutation. For example, for canavanine resistance I first calculate the effective target size to phenotypic mutation by way of a base-pair substitution at the \(\text{CAN1} \) locus (\(\tau_{\text{Can}^R, \text{BPS} \mid \text{CAN1}} = 163 \text{ base pairs} \)). Intuitively this means that if one considers only base-pair substitutions, the \(\text{CAN1} \) gene is effectively 163 base pairs where any base-pair substitution will result in canavanine resistance. This value is then used to calculate the locus-specific effective target size to canavanine resistance by way of any mutation (\(\tau_{\text{Can}^R, \text{CAN1}} = 236 \text{ base pairs} \)) meaning that \(\text{CAN1} \) is effectively 236 base pairs where any mutation will result in canavanine resistance. In order to calculate \(\tau_{\text{Can}^R, \text{CAN1}} \) one needs to weight the effective target sizes for canavanine resistance by way of each particular class of mutation by the frequency with which that mutation occurs.

The effective target sizes that are calculated are valid only as long as the frequencies of particular classes of mutation are conserved and, therefore are likely to vary between strain backgrounds and growth conditions. Varying the selective media may alter the fraction of missense mutations; for example some \textit{ura3} mutants will form colonies at low concentrations of 5-fluoro-orotic acid but not at high ones. Therefore, it
is critical that I determined the effective target sizes by sequencing mutant *ura3* and *can1* alleles from the same plates that were used for the fluctuation assays.

Genes of similar lengths may have very different effective target sizes. Mutational hotspots such as microsatellite sequences and poly-nucleotide runs will increase the effective target size by increasing the local rate of frameshift mutations. Mutator alleles not only increase the mutation rate, but also influence the effective target size by altering the mutational spectra. In addition, since mutation rates are believed to vary across the genome [46, 50], the effective target size may change if a gene is moved to a different location. In the context of this experiment, if *CAN1* were moved to a location in the genome where the mutation rate is two-fold higher than at its endogenous locus, the target size will be twice as large, since, given the definition of effective target size, moving the gene doubles the probability of a mutation resulting in canavanine resistance given a single mutation occurring anywhere in the genome. In my notation, I do not explicitly state that the *CAN1* gene is at endogenous location. I do, however, indicate that my estimate of locus-specific effective target size is conditioned upon a mutation within the 1773 base-pair region of the *CAN1* coding sequence. I specify this with the superscript *CAN1* (*τ_{Can^1}*) to distinguish this locus-specific effective target size from the effective target size for a mutation occurring anywhere within the genome (*τ_{Can^R}*).

\[\lambda_{\text{Can}^1} \cdot \tau_{\text{Can}^1} = \tau_{\text{Can}^R} \]

Target size for mutations conferring resistance to α-factor: If I take μ_{bp} to be the average of the per-base-pair mutation rates at *CAN1* and *URA3*, 5.12×10^{-10}, I can estimate the effective target size for mutation to α-factor resistance as
\[\tau_{\alpha^F} = \mu_{\alpha^F} / \hat{\mu}_{bp} = 3.07 \times 10^{-6} / 5.12 \times 10^{-10} = 5996 \text{ bp}. \]

Taking the mean ratio of target size to gene size for \textit{CAN1} and \textit{URA3}, 0.14, this suggests the total length of genes in which a loss-of-function mutation results in \(\alpha \)-factor resistance is 41.5 kilobase pairs. Summing over the lengths of known targets (\textit{STE2}, \textit{STE4}, \textit{STE5}, \textit{STE7}, \textit{STE11}, \textit{STE12}, \textit{STE20}, \textit{STE50}, \textit{FAR1}, and \textit{FUS1}) accounts for only 18.6 kilobase pairs. There are four possible explanations for this inconsistency. There could be unidentified genes whose inactivation results in \(\alpha \)-factor resistance; however, given the degree to which the mating pathway has been studied, it is unlikely that enough components remain unidentified to account for this difference. It is could be that many more loss-of-function missense mutations are possible for signaling proteins than for enzymes or transporters. The third possibility is that a change of the mating type locus from \textit{MATa} to \textit{MAT\alpha} provides an additional class of mutation to \(\alpha \)-factor resistance.

Although the strain used in this study is heterothallic, a spontaneous double-strand break at the \textit{MAT} locus can be repaired off of the silent \textit{HML\alpha} cassette resulting in mating type switching and \(\alpha \)-factor resistance. The rate of mating type switching in heterothallic yeast is estimated to be between \(10^{-7} \) and \(10^{-6} \) [56]. An additional possibility is that \textit{CAN1} and \textit{URA3} are located in regions that are coldspots compared to the genome-wide average mutation rate (or one or more of the genes involved in \(\alpha \)-factor resistance could be located in a mutational hotspot; however, since the target for \(\alpha \)-factor resistance is spread over the genome, it likely averages over local hotspots and coldspots). Asserting that the known genes that can mutate to confer \(\alpha \)-factor resistance have an average \(\lambda \) of 1 predicts \(\lambda_{\text{CAN1}} = 0.55 \) and \(\lambda_{\text{URA3}} = 0.32 \).
3.4 Mutation rate per base pair per generation

I measured phenotypic mutation rates and, from the same experiments, the locus-specific effective target sizes to phenotypic mutation. My results indicate that the per-base-pair mutation rate at *URA3* and *CAN1* is $\mu_{bp}^{URA3} = 3.80 \times 10^{-10}$ and $\mu_{bp}^{CAN1} = 6.44 \times 10^{-10}$ per base pair per generation, respectively. Drake [22] obtains similar values, but his method differs slightly. He also utilizes fluctuation assays and mutational spectra; however, rather than calculate the effective target size to phenotypic mutation, Drake estimates the number of base-pair substitutions that occurred in the coding sequence as $64/3$ times the number of nonsense mutations detected, ignoring missense mutations detected in the mutational spectra. He then calculates a correction factor (the inverse of the detection frequency) to scale the mutation rate then divides the corrected mutation rate by the size of the open reading frame.

In principle Drake’s method and mine should yield similar values for the per-base-pair mutation rate. Analyzing my data using the Drake method yields estimates of $\mu_{bp}^{URA3} = 3.49 \times 10^{-10}$ and $\mu_{bp}^{CAN1} = 5.92 \times 10^{-10}$ per base pair per generation, respectively. Drake converts the per-base-pair mutation rate to a per-genome mutation rate by scaling to the size of the genome. Since these estimates of the per-base-pair mutation rate are specific for particular loci, scaling up is accurate only if mutation rate is uniform across the genome. Several experiments suggest that mutation rate varies across the genome by at least an order of magnitude [46, 50]. On a genomic scale, *URA3* and *CAN1* are relatively close (83 kilobases apart on the left arm of Chromosome V) yet my two point estimates of the per-base-pair mutation rate differ by a factor of 1.7.
In order to determine if this difference in mutation rate is significant, I need to place confidence limits on the per-base-pair mutation rate estimates. In Section 2.4, I showed that the 95% confidence intervals for my estimates of phenotypic mutation rate are 1.34 to 1.71 x 10^{-7} and 4.78 to 5.87 x 10^{-8} for resistance to 10 x canavanine and 5FOA, respectively. Since only 207 of 237 5FOA resistant mutation are URA3 mutants, the 95% confidence interval for the rate of loss of function of URA3 is 4.17 to 5.13 x 10^{-8}.

I used a bootstrapping method to generate 95% confidence intervals around the estimates of the effective target size by discarding 25% of the mutational spectra data and recalculating the effective target sizes. This process was iterated 10,000 times for both τ_{5FOA}^{URA3} and τ_{Can1}^{URA3}. The range of these distributions is 99.90 to 162.82 and 190.64 to 285.60 for τ_{5FOA}^{URA3} and τ_{Can1}^{URA3}. Excluding the extreme 2.5% at either end of the distribution, 95% of the values lie between 109.17 and 140.81 for τ_{5FOA}^{URA3} and between 207.16 and 257.73 for τ_{Can1}^{URA3}. To place conservative confidence limits on the per-base-pair mutation rate estimates I took the lower bound for phenotypic mutation rate divided by the upper bound for the effective target size and vice-versa. This yields non-overlapping confidence intervals of 2.96 to 4.70 x 10^{-10} and 5.21 to 8.24 x 10^{-10} per base pair per generation for μ_{bp}^{URA3} and μ_{bp}^{Can1}, respectively.

In this chapter, I have shown that the per-base-pair mutation rate varies on two length scales: between different positions within the CAN1 and URA3 genes and between the genes themselves. It is possible that these two observations are related; however, since I measured forward mutation rates over large targets, I likely averaged over the local sequence effects. Therefore, the difference in the per-base-pair mutation rate I observe between CAN1 and URA3 is most likely due to mutation rate variation on a
larger scale. Ito-Harashima et al. [50] find that the frequencies of ochre suppressor mutations, detected at eight identical tRNA-Tyr alleles, vary by a factor of about 20. Hawk et al. [46] show that the rate of microsatellite frameshift mutations varies 16-fold across the genome, due in part to variation in the efficiency of mismatch repair. Consistent with this, I show that the per-base-pair per-generation spontaneous mutation rate is non-uniform across the genome and varies about 2-fold between two reporters, 83 kilobases apart, on the left arm of Chromosome V.
Chapter 4

Mutation rate variation I:
Variation across the yeast genome

4.1 Introduction
4.2 Materials and methods
 Primers, strains, and media
 Plasmid construction
 Strain construction
 Fluctuation assays
 Computational analysis
4.3 Mutation rate varies across Chromosome VI
 Measuring mutation rate across Chromosome VI
 Identification of outliers
4.4 Mutation rate is correlated with replication timing
4.5 Model for replication timing and mutation rate
4.6 Discussion
 In relation to previous work
 Biological significance
Abstract

Results from the previous chapter suggest that mutation rate is non-uniform across the yeast genome. Previous experimental studies also support this conclusion. In order to characterize mutation rate variation across the genome more precisely, I measured the mutation rate of the \textit{URA3} reporter integrated at 43 different locations tiled across Chromosome VI. In this chapter, I show that mutation rate varies six-fold across the genome, that this variation is correlated with replication timing, and I propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation. These results are discussed in relation to previous studies and their biological significance is examined.

4.1 Introduction

In Chapter 3, I presented evidence for a two-fold difference in the per-base-pair mutation rate between the \textit{URA3} and the \textit{CAN1} loci in yeast. This is consistent with previous reports of mutation rate variation within the yeast genome. One experiment looked at the frequency at which tRNA-Tyr ochre suppressors occur [50]. Ochre suppressor mutations occur when a GC to TA transversion converts the GTA tRNA-Tyr anticodon into TTA, which is capable of decoding the TAA ochre stop codon. Ochre suppressors can be isolated based on their ability to read through an ochre stop codon in a reporter gene. The yeast genome contains eight nearly identical tRNA-Tyr genes distributed between five chromosomes, containing only one polymorphic site located in
the intron [50]. Assuming that mutation rates are uniform across the yeast genome, one would expect each of the ochre suppressor mutations (SUP2-o, SUP3-o, SUP4-o, SUP5-o, SUP6-o, SUP7-o, SUP8-o, and SUP11-o) to occur with equal probability. However, when 126 independent ochre suppressor mutations were analyzed it was found that the tRNA-Tyr genes do not mutate at equal frequency; SUP6-o mutations represent 31% of the ochre suppressors whereas SUP2-o and SUP8-o combined represent only 3%, suggesting that the rate of GC to TA transversions is non-uniform across the yeast genome [50]. The authors rule out that this variation is due to trivial causes such as the intron polymorphism or the ability of each tRNA-Tyr to act as a suppressor by showing that the suppressor frequency is not correlated with the identity of the polymorphism or the strength of the suppressor. In addition, the rate of tRNA-Tyr ochre suppressor mutations is uncorrelated with replication timing, the rate of fork movement, or proximity to centromeres, telomeres, Ty or delta elements [50]. However, the orientation of the tRNA-Tyr gene relative to the nearest origin of replication may account for some of the variation observed in mutation frequency. The three least-frequently observed ochre suppressor genes are transcribed in the same direction as replication fork movement, whereas the other five ochre suppressor genes are in the opposite orientation relative to the replication fork [50].

Another experiment examined the effect of genome position on the stability of a microsatellite sequence by placing 16.5 copies of the GT dinucleotide in frame with the URA3 reporter and integrating this construct at ten locations across the yeast genome [46]. The locations for integration of this construct were chosen to be near genomic features such as centromeres, telomeres, replication origins, and at the SUP2-o and
SUP6-0 loci, which were shown to mutate at different frequencies. Between these ten strains there is a 16-fold difference in the mutation rate to 5FOA resistance, and the majority of these mutations resulted from frameshift mutations within the polyGT tract. Mismatch repair is primarily responsible for correcting these types of mutations [31, 60].

In order to determine if this mutation rate variation is due to variation in the production of errors or to variation in the ability to correct errors, a key gene involved in mismatch repair, msh2, was deleted in six of the strains. In the mismatch repair deficient strains the mutation rate variation is reduced from 16-fold to two-fold, suggesting that the variation in microsatellite stability across the genome is largely due to variation in the efficiency of mismatch repair [46].

Although the authors were able to identify mismatch repair as the mechanism responsible for variation of microsatellite stability, they were unable to identify genomic features underlying the variation in the efficiency of mismatch repair. The rate of microsatellite frameshift mutations is not correlated with proximity to replication origins, orientation relative to replication origins, replication timing, rates of transcription, or GC content [46]. The authors propose that this variation may result from differences in the ability of mismatch repair to recognize and/or access mismatched bases [46].

In order to better characterize the degree of mutation rate variation within the yeast genome, I sought to integrate the URA3 gene at different locations in the yeast genome and, using the fluctuation assay, measure the rate of mutation in each strain. To aid in strain construction, I took advantage of the existence of the yeast deletion collection, where every non-essential open reading frame (ORF) was systematically deleted and replaced with the KanMX4 reporter, conferring resistance to the drug G418
To integrate *URA3* at different locations, strains were pulled from the deletion collection and the KanMX4 cassette was replaced with the *URA3* gene. Rather than integrate the *URA3* gene at locations selected randomly across the genome, I chose to systematically integrate the gene across a single chromosome. By doing so, I did not bias the results by integrating reporters near particular genomic features and I avoided any complications that may result from variation in mutation rates between the chromosomes. I chose Chromosome VI for several reasons: it is the second smallest chromosome (270 kilobases, 40 kilobases larger than Chromosome I), it is close to being metacentric, the gene closest to any centromere (*DEG1*) is on this chromosome, two of the tRNA-Tyr ochre suppressor genes are on this chromosome, and none of the 30 known mutator alleles are on this chromosome. As it turned out, Chromosome VI was a convenient choice for another reason: it is the chromosome for which replication timing has been most carefully studied [32, 105, 141]. I created 43 strains with the *URA3* gene integrated at a different location tiled across Chromosome VI. Using this collection, I show that mutation rate varies at least six-fold across the yeast genome, that this variation exists on a length scale of 50 to 100 kilobases and that mutation rate is correlated with replication timing as a consequence of the temporal separation of two mechanisms of DNA damage tolerance: error-free DNA damage tolerance and translesion synthesis.

4.2 Materials and methods

Primers, strains, and media: The sequences of oligonucleotides used for plasmid construction, gene replacement, verification, and sequencing are described Table 4-1. The yeast strain GIL066 (described in Chapter 5) was used a source for the *URA3* gene
<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequence</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| URA3extF_integration | 5’ AGACCTGCGAGCAGGAAAACGCTCCCCTCA
 | CAGACGCCTTTGAAATTG7CCCCCAGCAGCTGC
 | ATCAAAGAGCTTAATGCTG 3’ | Strain construction |
| URA3extR_integration | 5’ TGTCAGTACTGATTAGAAAAACTCATGAG
 | CATAAAGAAGGTTAATGTGG 3’ | Strain construction | |
| URA3intF2 | 5’ TGGGCAGACATTACGAATGC 3’ | Sequencing |
| URA3intR2 | 5’ CAAACCGCTAACAATACCTG 3’ | Sequencing |
| YFL063W_F | 5’ AACAGTCTCCCCTCAAATAC 3’ | PCR/Sequencing |
| YFL063W_R | 5’ GGACACAGAAAGGTTGTTG 3’ | PCR/Sequencing |
| YFL011W_F | 5’ ATGACATATGGTATGACGG 3’ | PCR/Sequencing |
| YFL011W_R | 5’ GAGGACAGGAGCACTTTGTTGG 3’ | PCR/Sequencing |
| YFR030W_F | 5’ AGAAATGTTCCAAGAGGGAGTTC 3’ | PCR/Sequencing |
| YFR030W_R | 5’ TGGGCAATTTCTAGGAGGAGG 3’ | PCR/Sequencing |
| YFR043C_F | 5’ TTTTACTAGCATTCTTCTATGCTTGG 3’ | PCR/Sequencing |
| YFR043C_R | 5’ ATGACATATGGTATGACGG 3’ | PCR/Sequencing |
| YFR049W_F | 5’ GCGAATGTGATTCTATGCTTCC 3’ | PCR/Sequencing |
| YFR049W_R | 5’ TTCCAGATCTTTTTATCTTCTT 3’ | PCR/Sequencing |
| ARS607_F5 | 5’ CATTAGAGCAGAGAAACTATATCATGTA
 | ATTCTCCAATATGTGTATATATAAACACTAC
 | ATTCGCTTTAAATATTTAGGTTAGG 3’ | Plasmid construction |
| ARS607_R5 | 5’ GCGAATGTGATTCTATGCTTCTACTAC
 | ACTGTCGAATAAAATATGTGTAAGTCTCAAAA
 | TTCCCCCTATGCAATATATAATGTA 3’ | Plasmid construction | |
| ARS607_F6 | 5’ AACAGAGAAACATATTTGTGATTCTTCC 3’ | Plasmid construction |
| ARS607_R6 | 5’ AGGCGGAGCACTTTGTTGG 3’ | PCR/Sequencing |
| ARS607_F4 | 5’ ATGACATATGGTATGACGG 3’ | PCR/Sequencing |
| ARS607_R7 | 5’ TTTTACTAGCATTCTTCTTCTTCT 3’ | PCR/Sequencing |
| ARS607_extF1 | 5’ GTTTTTCAGTTTGTGAGGATCC 3’ | PCR/Sequencing |
| ARS607_extR1 | 5’ GGTGTCGACGTCCATAAGG 3’ | PCR/Sequencing |
| REV1extF1 | 5’ TGGCGCATATTATAACATTTG 3’ | Strain construction |
| REV1extR1 | 5’ GAGGCGGGCCTTCCAATACC 3’ | Strain construction |
| REV1extF3 | 5’ TTGGTGTTGAAATAGGCGGAGG 3’ | PCR |
| KanMXintF | 5’ CAGTTGTTGTAATTGCTGATG 3’ | PCR |
used in this study. The nomenclature in this chapter is such that strains pulled from the yeast deletion collection are named after the deleted ORF. If the KanMX4 cassette is replaced with the *URA3* gene in these strains they are referred to by their “GL” designation in Table 4-2. Yeast cultures were grown in either complete synthetic media (SC), or complete synthetic media without uracil (SC-Ura). Fluctuation assays were plated onto either 10 x canavanine (complete synthetic media without arginine [SC-Arg], 0.6 g/L l-canavanine, Sigma-Aldrich, St. Louis, MO), or 5FOA (SC-Ura, 1 g/L 5FOA, Sigma-Aldrich, St. Louis, MO). In preparation for plating several spots of mutant cultures on each plate, the plates were over-dried by pressing a Whatman filter paper (Grade 3, 90 mm) onto the plates using a replica plating block and allowing the filter to remain in place for at least 30 min. The filters remove approximately 1 mL of liquid and plates can be used for several days after filters have been removed.

Plasmid construction: The plasmid pGIL001 was made in order to efficiently and accurately replace the *KanMX4* cassette with the *URA3* gene. The *URA3* gene was amplified from a genomic preparation of the yeast strain GIL066 (W303 background) using primers *URA3*extF_integration and *URA3*extR_integration. These primers amplify a 1.8 kilobase fragment containing the yeast *URA3* promoter and coding sequence. In addition, these primers contain 60 base-pairs of homology to the KanMX4 cassette. This PCR fragment was used to transform the strain YEL020C. Transformants were sequenced using primers U1, D1, *URA3*intF2, and *URA3*intF3 to identify ones where no mutations were introduced into the *URA3* gene during the construction. The *kanMX4Δ::URA3* cassette was amplified using primers U1 and D1 (the universal upstream and downstream primers from the yeast deletion collection [139]), digested
<table>
<thead>
<tr>
<th>Strain</th>
<th>ORF</th>
<th>Description</th>
<th>† Position</th>
<th>Strain</th>
<th>ORF</th>
<th>Description</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL·0</td>
<td>YEL020C</td>
<td>hypothetical</td>
<td>Chr. V</td>
<td>GL·25</td>
<td>YFL003C</td>
<td>MSH4</td>
<td>134516</td>
</tr>
<tr>
<td>GL·1</td>
<td>YFL063W</td>
<td>hypothetical</td>
<td>5066</td>
<td>GL·26</td>
<td>YFL001W</td>
<td>DEG1</td>
<td>147126</td>
</tr>
<tr>
<td>GL·2</td>
<td>YFL056C</td>
<td>AAD6</td>
<td>14793</td>
<td>GL·27</td>
<td>YFR001W</td>
<td>LOC1</td>
<td>149105</td>
</tr>
<tr>
<td>GL·3</td>
<td>YFL055W</td>
<td>AGP3</td>
<td>17004</td>
<td>GL·28</td>
<td>YFR006W</td>
<td>hypothetical</td>
<td>156139</td>
</tr>
<tr>
<td>GL·4</td>
<td>YFL054C</td>
<td>hypothetical</td>
<td>20847</td>
<td>GL·29</td>
<td>YFR007W</td>
<td>hypothetical</td>
<td>159293</td>
</tr>
<tr>
<td>GL·5</td>
<td>YFL052W</td>
<td>hypothetical</td>
<td>28232</td>
<td>GL·30</td>
<td>YFR009W</td>
<td>GCN20</td>
<td>162482</td>
</tr>
<tr>
<td>GL·6</td>
<td>YFL050C</td>
<td>ALR2</td>
<td>33272</td>
<td>GL·31</td>
<td>YFR012W</td>
<td>hypothetical</td>
<td>167881</td>
</tr>
<tr>
<td>GL·7</td>
<td>YFL049W</td>
<td>hypothetical</td>
<td>36803</td>
<td>GL·32</td>
<td>YFR014C</td>
<td>CMK1</td>
<td>172529</td>
</tr>
<tr>
<td>GL·8</td>
<td>YFL047W</td>
<td>RGD2</td>
<td>40421</td>
<td>GL·33</td>
<td>YFR016C</td>
<td>hypothetical</td>
<td>177034</td>
</tr>
<tr>
<td>GL·9</td>
<td>YFL044C</td>
<td>YOD1</td>
<td>44655</td>
<td>GL·34</td>
<td>YFR017C</td>
<td>hypothetical</td>
<td>182262</td>
</tr>
<tr>
<td>GL·10</td>
<td>YFL041W</td>
<td>FET5</td>
<td>49139</td>
<td>GL·35</td>
<td>YFR019W</td>
<td>FAB1</td>
<td>184490</td>
</tr>
<tr>
<td>GL·11</td>
<td>YFL036W</td>
<td>RPO41</td>
<td>58781</td>
<td>GL·36</td>
<td>YFR021W</td>
<td>ATG18</td>
<td>194800</td>
</tr>
<tr>
<td>GL·12</td>
<td>YFL034W</td>
<td>uncharacterized</td>
<td>65475</td>
<td>GL·37</td>
<td>YFR023W</td>
<td>PES4</td>
<td>199862</td>
</tr>
<tr>
<td>GL·13</td>
<td>YFL032W</td>
<td>hypothetical</td>
<td>74870</td>
<td>GL·38</td>
<td>YFR026C</td>
<td>hypothetical</td>
<td>205736</td>
</tr>
<tr>
<td>GL·14</td>
<td>YFL027C</td>
<td>GYP8</td>
<td>80417</td>
<td>GL·39</td>
<td>YFR030W</td>
<td>MET10</td>
<td>213300</td>
</tr>
<tr>
<td>GL·15</td>
<td>YFL025C</td>
<td>BST1</td>
<td>84143</td>
<td>GL·40</td>
<td>YFR032C</td>
<td>hypothetical</td>
<td>222078</td>
</tr>
<tr>
<td>GL·16</td>
<td>YFL023W</td>
<td>BUD27</td>
<td>90984</td>
<td>GL·41</td>
<td>YFR035C</td>
<td>hypothetical</td>
<td>226109</td>
</tr>
<tr>
<td>GL·17</td>
<td>YFL021W</td>
<td>GAT1</td>
<td>95964</td>
<td>GL·42</td>
<td>YFR039C</td>
<td>hypothetical</td>
<td>231999</td>
</tr>
<tr>
<td>GL·18</td>
<td>YFL019C</td>
<td>hypothetical</td>
<td>100246</td>
<td>GL·43</td>
<td>YFR043C</td>
<td>hypothetical</td>
<td>239101</td>
</tr>
<tr>
<td>GL·19</td>
<td>YFL015C</td>
<td>hypothetical</td>
<td>106463</td>
<td>GL·44</td>
<td>YFR045W</td>
<td>hypothetical</td>
<td>242129</td>
</tr>
<tr>
<td>GL·20</td>
<td>YFL012W</td>
<td>hypothetical</td>
<td>110641</td>
<td>GL·45</td>
<td>YFR049W</td>
<td>YMR31</td>
<td>248510</td>
</tr>
<tr>
<td>GL·21</td>
<td>YFL011W</td>
<td>HXT10</td>
<td>112339</td>
<td>GL·46</td>
<td>YFR053C</td>
<td>HK1</td>
<td>253579</td>
</tr>
<tr>
<td>GL·22</td>
<td>YFL010C</td>
<td>WWM1</td>
<td>115102</td>
<td>GL·47</td>
<td>YFR054C</td>
<td>hypothetical</td>
<td>258842</td>
</tr>
<tr>
<td>GL·23</td>
<td>YFL007W</td>
<td>BLM3</td>
<td>123474</td>
<td>GL·48</td>
<td>YFR055W</td>
<td>hypothetical</td>
<td>264191</td>
</tr>
<tr>
<td>GL·24</td>
<td>YFL004W</td>
<td>VTC2</td>
<td>131805</td>
<td>GL·49</td>
<td>YFR057W</td>
<td>hypothetical</td>
<td>269048</td>
</tr>
</tbody>
</table>

† Position is the location at which the gene is first encountered moving across Chromosome VI starting at the left telomere.
with EcoRI and BamHI and cloned into the plasmid pFA6a-KanMX4 (which was digested with EcoRI and BamHI to remove the KanMX4 gene and expose the corresponding restriction enzyme overhangs). Proper construction of the plasmid was verified by restriction digesting and sequencing. The resulting plasmid, pGIL001, is pFA6a-KanMX4 with a 1.8 kilobase URA3 fragment is inserted in the KanMX4 cassette. On either side of the URA3 fragment is 300 base-pairs of homology to the KanMX4 cassette including a partial TEF promoter upstream, and some remaining KanMX4 coding sequence and the TEF terminator downstream. The URA3 sequence of pGIL001 differs from the published genomic sequence for URA3 by eight mutations. One mutation (an insertion of a T to a run of seven T’s in the promoter region) was created during the construction of this plasmid. The other seven were present in the URA3 gene in our laboratory W303 background; therefore, these mutations are present in the URA3 genes described in previous and subsequent chapters. Only one of these seven mutations is in the coding sequence and results in the substitution of serine for alanine at position 160.

Plasmid pGIL008 was constructed to facilitate deletion of ARS607. Primers ARS607_F5 and ARS607_R5 were annealed and extended, generating a 160 base pair fragment corresponding to approximately 80 base pairs of homology to the regions flanking ARS607 but devoid of the 111 base pair ARS607 sequence itself. This fragment was amplified using primers ARS607_F6 and ARS607_R6, which contain NsiI and EcoRI sites, respectively. The fragment was cut and cloned into the NsiI and EcoRI sites of pGIL001. The resulting plasmid, pGIL008, contains the URA3 gene followed by a 160
base pair fragment corresponding to approximately 80 base pairs of sequence from each sides of \textit{ARS607}.

\textbf{Strain construction:} Forty-nine strains were constructed each with the \textit{URA3} gene in a different location tiled across Chromosome VI and with the \textit{CAN1} gene at its endogenous locus on Chromosome V (Figure 4-1). Initially 49 locations along Chromosome VI were selected for integration of the \textit{URA3} gene. The locations were chosen such that the average spacing between reporters was on average 3.8 kilobases (Figure 4-2), and that the reporters were approximately evenly spaced across the length of the chromosome. Since the yeast deletion collection was being used for construction, care was taken to avoid any strains where the gene replacement resulted in fitness defects; therefore, many of the integrations were made in hypothetical ORFs (those that have no ascribed function and were identified by their likelihood of encoding protein). Table 4-2 reports the identity of the 49 strains selected for this experiment.

To replace the KanMX4 cassette with the \textit{URA3} gene, pGIL001 was digested with \textit{EcoRI} and \textit{BamHI}, phenol chloroform extracted, ethanol precipitated, and used to transform each of the 49 strains. Transformants were subjected to three rounds of screening. First each was screened for the proper phenotype (Uracil prototrophy and G418 sensitivity). PCR, using primers U1 and D1, was used to verify integration in the phenotypically correct strains. The amplified KanMX4Δ::\textit{URA3} cassettes were then sequenced using primers U1, D1, \textit{URA3}intF2, and \textit{URA3}intR2 to verify (1) that the strains were correct based upon the barcode used in the yeast deletion project, and (2) that no mutations were introduced in the reporter during transformation. For five phenotypically correct strains (GL·1, GL·21, GL·39, GL·43, and GL·45), I was unable to
Figure 4-1. Schematic of strain construction. Forty-nine strains were constructed with the \textit{URA3} gene integrated at a different location tiled across Chromosome VI. Each strain contains the wild-type \textit{CAN1} gene at its endogenous location on Chromosome V. The location of the reporter genes is represented as bands on the chromosomes.
Figure 4-2. Coverage of Chromosome VI. (A) Positions where *URA3* was integrated along Chromosome VI. Position is the location at which the gene is first encountered moving across Chromosome VI starting at the left telomere irrespective of orientation. (B) The distribution of gap sizes between the integrated *URA3* genes. Six strains were not used in the analysis (see text); therefore, the actual coverage of Chromosome VI is slightly less than reported here.
generate a PCR product using the primers U1 and D1. For these strains I used ORF-specific primers. Using these primers, I was able amplify the cassette from GL·21 and GL·39 and verify that these strains are correct. For GL·43 and GL·45, I was again unable to generate a PCR product; therefore, I could not verify that the \textit{URA3} gene in these strains was properly integrated; therefore, these strains were excluded from further analysis. For GL·1, I was able to generate a PCR product showing that, although this strain is phenotypically correct (meaning that \textit{URA3} is integrated within the KanMX4 reporter), the KanMX4 reporter is not at the YFL063W locus. This strain, too, was excluded from further analysis.

In order to manipulate replication timing, a two-step method was used in order to create a perfect deletion the early and efficient origin, \textit{ARS607}. First the \textit{URA3} gene followed by approximately 80 base pairs of homology to the regions flanking \textit{ARS607} (but devoid of the 111 base pair \textit{ARS607} sequence itself) was amplified using primers \textit{ARS607}_F4 and \textit{ARS607}_R7. This fragment was used to transform the strain YFR021W. There are two ways that this fragment can integrate into the genome: in place of \textit{ARS607} or adjacent to \textit{ARS607}. This is because one end of the fragment contains homology upstream and downstream of \textit{ARS607}. The second step of strain construction was to select for popout of the \textit{URA3} gene. If the \textit{URA3} fragment integrated in place of \textit{ARS607}, the popout will result in a perfect deletion of the 111 base pair \textit{ARS607} sequence; however, if the \textit{URA3} fragment integrated adjacent to \textit{ARS607}, the popout will reconstitute the wild-type sequence. Following \textit{URA3} integration, 12 transformants were grown overnight in SC-Ura and cells were plated on 5FOA to select for loss of \textit{URA3}. Deletion of \textit{ARS607} was determined by PCR using primers \textit{ARS607}_{ext_F1} and
ARS607ext_R1, which flank the ARS607 sequence. Following popout of URA3 at the deleted ARS607 locus, the URA3 gene was integrated in place of the KanMX4 cassette to create the strain GL·36ARS607Δ.

To eliminate translesion synthesis, the rev1Δ::KanMX4 cassette was amplified from the deletion collection using primers REV1extF1 and REV1extR1, and this fragment was used to transform strains GL·3, GL·15, GL·24, and GL·37. Deletion of REV1 was verified phenotypically by assaying for UV-sensitivity and by PCR using primers REV1intF1/REV1extR3 and KanMXintF/REV1extR3.

Fluctuation assays: Fluctuation assays were performed essentially as described in Chapter 2. For each strain, 48 100 µl cultures and 48 200 µl cultures of a 1:10,000 dilution of a saturated overnight culture were established in a 96-well plate. Twelve 100 µl cultures and 12 200 µl cultures were pooled to determine the number of cells per culture. The remaining 36 100 µl cultures were plated onto canavanine plates (0.6 g/L canavanine, the same as the 10 x canavanine plates in Chapter 2) and the remaining 36 200 µl cultures were plated onto 5FOA plates. Mutants were counted after two (canavanine) or seven (5FOA) days of growth and mutation rates were calculated using the Ma-Sandri-Sarkar maximum likelihood method [112]. Ninety-five percent confidence intervals on were calculated using equations 24 and 25 from [107].

Computational analysis: Mutation rates were calculated using the Matlab program findMLm described in Appendix B. Mutation rates across Chromosome VI were compared to several other datasets to look for correlations; these include recombination rate [38] and replication timing [105]. Perl was used to calculate GC content 500 base pairs upstream and downstream of each reporter. The Spearman rank correlation test was
performed in Matlab. The sequences of RM11-1a and YJM789 were obtained from the Broad Institute Fungal Genome Initiative (http://www.broad.mit.edu/annotation/fungi/fgi/) and the Stanford Genome Technology Center (version 2, http://med.stanford.edu/sgtc/research/yjm789.html), respectively. Genes were identified by blasting the S288c sequences against these databases. Sequences were manually extracted and aligned to S288c. Synonymous substitution rates between S288c, RM11-1a, and YJM789 were calculated in Perl. ORFs where S288c contained the allele of one of the strains (RM11-1a or YJM789) were excluded from the analysis. Synonymous substitution rates between \textit{S. cerevisiae} and \textit{S. paradoxus} were obtained from [53].

4.3 Mutation rate varies across Chromosome VI

\textit{Measuring mutation rate across Chromosome VI:} To determine whether mutation rate varies across the yeast genome, I created 43 strains, each of which has the \textit{URA3} gene integrated at a different location tiled across Chromosome VI. In addition to the \textit{URA3} gene, all of these strains contain the wild-type \textit{CAN1} gene at its endogenous locus (Figure 4-1). Fluctuation assays were performed using these 43 strains to determine the mutation rate at the \textit{URA3} and \textit{CAN1} genes (5FOA resistance and canavanine resistance, respectively). Figure 4-3 shows the results from this experiment. The mutation rate at the \textit{CAN1} locus varies between the 43 strains, but this variation is within the range that is expected by chance: only one point lies outside the 95% confidence interval of the median mutation rate of the 43 strains (Figure 4-3b, shaded region). In contrast, the degree of mutation rate variation at the \textit{URA3} gene is greater
Figure 4-3. Mutation rate varies across Chromosome VI. (A) Mutation rate to 5FOA resistance from 43 strains (where URA3 is integrated in a different location in each strain) reveals that mutation rate varies by an order of magnitude across Chromosome VI. The shaded region corresponds to the 95% confidence interval for the median mutation rate. (B) There is less variation for mutation rates for 10 x canavanine resistance from the same 43 strains (where CAN1 is in the same location in every strain). Only two of the 43 points lie outside of the 95% confidence interval for median mutation rate (shaded region).
than expected by chance. There are 25 strains where the mutation rate lies outside the 95% confidence interval of the median (Figure 4-3a). The degree of variability is better illustrated by comparing all pairwise comparisons between mutation rates in the 43 strains (Figure 4-4). For mutation rates at \(\text{CAN1} \) there are only three significant pairwise comparisons out 903 (Figure 4-4b; the plot is symmetrical across the diagonal, thus every comparison is shown twice); however, for \(\text{URA3} \), 262 out of the 903 pairwise comparisons are significantly different (Figure 4-4a). From the pairwise comparisons, it is apparent that there are three regions of Chromosome VI, each with a length scale of 50 to 100 kilobases. Within a region, mutation rate is not significantly different, but the region as a whole is significantly different from adjacent regions. The three regions on Chromosome VI correspond to a region of high mutation rate on the left arm of the chromosome, a region of low mutation rate extending across the centromere, and a region of median mutation rate on the right arm of the chromosome.

Identification of outliers: The original strain construction for this experiment involved integrating \(\text{URA3} \) at 49 locations across Chromosome VI. Fluctuation assays were performed on all 49 strains; however, six of the strains were eliminated from further analysis. Difficulties with three of the strains were apparent during construction. For two strains (GL·43 and GL·45), I was unable to generate a PCR product using either the universal primers or ORF-specific primers, both of which were able to generate PCR products in a wild-type strain. Therefore, it is possible that a chromosomal rearrangement occurred in these strains. Interestingly, these two strains have the lowest mutation rates of the 49 measured strains (\(0.5 \times 10^{-8} \) and \(0.7 \times 10^{-8} \), respectively). For the strain GL·1, ORF-specific PCR shows that in the strain pulled from the deletion
Figure 4-4. Pairwise comparisons of mutation rates at *URA3* and *CAN1*. Ninety-five percent confidence intervals were generated for all 43 points in Figure 4-3. To determine if mutation rate varies significantly across Chromosome VI all pairwise comparisons of mutation rates from the 43 strains are shown for both *URA3* and *CAN1*. The plots are symmetrical along the diagonal. For *CAN1* there are only three significant differences in mutation rate; whereas, for *URA3*, 262 out of the 903 pairwise comparisons are significantly different. In particular, mutation rates cluster such that there are three regions of Chromosome VI with a relatively uniform mutation rate. These correspond to a region of high mutation rate along the left arm of Chromosome VI, a region of low mutation rate across the centromere, and a region of median mutation rate on the right arm (see Figure 4-3). The length scale over which mutation rate is relatively constant is 50 to 100 kilobases (Figure 4-3).
collection, the KanMX4 is not integrated at the subtelomeric YFL063W locus. Phenotypically, I show that \textit{URA3} successfully replaced the KanMX4 cassette; however, since this strain is one where the universal primers fail to produce a PCR product, I am unable to determine the location of the KanMX4Δ::\textit{URA3} cassette. Interestingly, this strain shows the highest mutation rate (46.8 x10-8, 5.3-fold higher than the second highest strain, which is also an outlier, described below), as one might expect for a subtelomeric reporter, which can be inactivated by silencing as well as mutation. Given the similarity of yeast telomeres, it is possible that this reporter is located in a subtelomeric region on a different chromosome.

In addition to the three outliers detected during strain construction, three outliers were detected during the experiment. As mentioned above, the strain with the second highest mutation rate at \textit{URA3} (8.8 x 108) is also an outlier. This is because this strain (GL·11) also has an elevated mutation rate at \textit{CAN1} (4.5 x 107, 4.8-fold higher than the median), indicating that this strain has a globally elevated mutation rate. None of the 30 known mutator alleles are found on Chromosome VI and there is no reason to suspect that the gene deleted during construction of the strain (\textit{RPO41}, encoding a mitochondrial RNA polymerase) is a mutator allele. Given that the yeast genome has been screened for mutator alleles [49], one of this strength is unlikely to have gone undetected; therefore, it is likely that this strain carries a spontaneous, transformation-induced mutation in one of the 30 genes that are known to be capable of giving rise to mutators. Two strains (GL·31 and GL·35) were eliminated from further analysis because they harbor a mutation causing them to grow differently on 5FOA than the rest of the strains. Both strains show a high mutation rate at \textit{URA3}. This phenotype is discussed further in Appendix A.
4.4 Mutation rate is correlated with replication timing

In order to determine the cause of mutation rate variation across Chromosome VI, I sought to determine if mutation rate is correlated to any other features of the chromosome. One possibility, which must be ruled out is that this variation is not position-dependent, but rather strain-dependent and that I do not detect this variation in the *CAN1* reporter because it may be less sensitive to this variation than the *URA3* reporter. This situation could arise if, for instance, the *URA3* gene contained mutational hotspots, which were missing (or underrepresented) in *CAN1*, and this experiment was really detecting strain-to-strain variation for one particular type of mutation. This situation is unlikely since both *URA3* and *CAN1* are large targets for mutation and do not contain any significant mutational hotspots as shown in Chapter 3; therefore, there is no expectation that one reporter would be more sensitive to variation. If such a mechanism were acting in this experiment one would expect that this strain-to-strain variation would act in the same direction for both reporters, although the magnitude of the responses would be different. In other words, one would expect the mutation rates at *CAN1* and *URA3* to be correlated. I find no correlation between mutation rates in the two reporters (Figure 4-5a, \(p = 0.07 \), Spearman); therefore, the mutation rate variation I see at the *URA3* gene in these strains is likely due to their position on Chromosome VI.

To look for features of the chromosome that are correlated with mutation rate, one should start by looking for properties of the genome that vary on a similar length scale (50 to 100 kilobases). GC content is one such feature [90, 116]. The average GC content for the 500 base-pairs upstream and downstream of each gene does not correlate
Figure 4-5. Mutation rate is correlated with replication timing. (A) In order to rule out that the observed mutation rate variation is strain-to-strain variation for which the URA3 reporter is more sensitive mutation rates at URA3 and CAN1 were compared and show no significant correlation. (B-D) To determine if mutation rate is correlated with a known property of the chromosome, mutation rate across was compared to GC content, recombination rate, and replication timing. (B) Mutation rate is not correlated with the average GC content 500 base pairs upstream and downstream of the integrated URA3. (C) Mutation rate shows a weak negative correlation to recombination rate. Recombination rates are from Gerton et al. (2000). (D) Mutation rate is strongly correlated with replication timing. Replication timing is from Raghuraman et al. (2001). The correlation between mutation rate and recombination rate can be accounted for by a weak negative correlation between replication timing and recombination rate ($p = 0.02$). p-values were determined using the Spearman rank correlation test.
with its mutation rate (Figure 4-5b, $p = 0.32$, Spearman). Recombination rate is another feature that may influence mutation rate. Although the data set for recombination rate was generated in meiosis [38], and the strains in this experiment were growing mitotically, the same sequences that stimulate recombination may also influence mutation rate. There is a weak negative correlation between recombination rates and mutation rates on Chromosome VI (Figure 4-5c, $p = 0.04$, Spearman). Another feature of the chromosome, which varies on a length scale of approximately 50 to 100 kilobases is replication timing. In yeast, replication of the genome is performed in a spatially and temporarily coordinated fashion, which is largely reproducible from cell cycle to cell cycle. The complete replication profile of the yeast genome has been determined [105]. There is a strong correlation between the time at which a region of the chromosome is replicated and its mutation rate (Figure 4-5d, $p < 10^{-5}$, Spearman). This correlation is such that early replicating regions have a low mutation rate and late replicating regions have a high mutation rate. Figure 4-6 shows a comparison of the replication profile and the mutation profile of Chromosome VI.

Chromosome VI contains 12 autonomous replicating sequences (ARSs) capable of initiating replication, each identified by the presence of a conserved ARS consensus sequence and by their ability to act as a replication origin on a plasmid (Table 4-3). In the genome, an ARS can constitute an origin of replication; the terms ARS and origin are often used interchangeably (ARS is a structural/sequence description, whereas origin is a functional description). Although Chromosome VI contains 12 ARS sequences, there are only seven prominent origins of replication (origins that fire in more than one quarter of cell cycles, Table 4-3). Origins are classified by two measures: their efficiency (the
Figure 4-6. Comparison of the replication timing and mutation rate. Replication profile from Raghuraman et al. (2001). Both axes are linear and the range of mutation rates and replication times is the same as in Figure 4-5d.
Table 4-3. Autonomously replicating sequences on Chromosome VI

<table>
<thead>
<tr>
<th>ARS</th>
<th>Position (kb)</th>
<th>† Timing (minutes)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>5</td>
<td>49.7</td>
<td>inefficient</td>
</tr>
<tr>
<td>601/602</td>
<td>33</td>
<td>43.1</td>
<td>32%</td>
</tr>
<tr>
<td>603</td>
<td>69</td>
<td>36.4</td>
<td>50%</td>
</tr>
<tr>
<td>603.5</td>
<td>119</td>
<td>23.2</td>
<td>67%</td>
</tr>
<tr>
<td>604</td>
<td>128</td>
<td>24.2</td>
<td>inefficient</td>
</tr>
<tr>
<td>605</td>
<td>136</td>
<td>25.9</td>
<td>27%</td>
</tr>
<tr>
<td>606</td>
<td>168</td>
<td>18.6</td>
<td>74%</td>
</tr>
<tr>
<td>607</td>
<td>199</td>
<td>13.4</td>
<td>85%</td>
</tr>
<tr>
<td>608</td>
<td>216</td>
<td>25.2</td>
<td>10%</td>
</tr>
<tr>
<td>609</td>
<td>256</td>
<td>43.5</td>
<td>37%</td>
</tr>
<tr>
<td>610</td>
<td>270</td>
<td>49.2</td>
<td>inefficient</td>
</tr>
</tbody>
</table>

Positions and efficiencies from the Saccharomyces Genome Database (http://www.yeastgenome.org). Position is the distance from the left telomere. Efficiency is the fraction of cell divisions in which the origin fires.

† Replication timing from Raghuraman et al. (2001). Timing indicates minutes since release from an α factor arrest.

ARS601 and ARS602 overlap and comprise one origin

ARS600 and ARS610 are subtelomeric
number of cell divisions where the origin fires) and their timing of firing during S-phase. Based upon their timing, origins are classified as either early or late. Although the times at which origins fire lie on a continuum, early and late origins are distinct in terms of the proteins associated with pre-origin complex and the genetic requirements for firing [111].

During the design of this experiment I did not anticipate that mutation rate would be correlated with replication timing. Since the strains were constructed such that *URA3* was integrated in place of an ORF, by chance three of these ORF deletions remove known yeast origins. *ARS605, ARS606,* and *ARS608* are deleted in strains GL:25, GL:31, and GL:39, respectively. Disruption of *ARS605* should have a small effect due to its close proximity to earlier firing *ARS603.5*. In addition, disruption of *ARS608* should have a negligible effect since it fires in only 10% of cell cycles. However, disruption of *ARS606* should affect the timing of replication since it is an early and efficient origin. Strain GL:31 was not used in the analysis because its growth on 5FOA is different from the other strains (Appendix A). Interestingly, this strain had a high mutation rate (6.5 x 10^{-8}) compared to other *URA3* reporters in the same region, which may be partly attributable to disruption of *ARS606*.

To test if disruption of an origin of replication can increase the local mutation rate in an early replicating/low mutation rate region, the earliest and most efficient origin, *ARS607*, was deleted in strain GL:36, where the *URA3* gene is located 3 kilobases away from the origin. Deletion of *ARS607* increased the mutation rate at *URA3* by 30% (from 2.21 x 10^{-7} to 2.88 x 10^{-7}) without increasing the mutation rate at *CAN1* (0.81 x 10^{-7} in GL:36 and 0.76 x 10^{-7} in GL:36 *ARS607Δ*). This slight increase in mutation rate is not significant given the error in fluctuation assays. It is possible that deletion of *ARS607* did
not significantly delay replication timing in the region. The early but inefficient ARS608 is 17 kilobases away. In the absence of ARS607, ARS608 may fire in more cell cycles and allow for early replication of this region.

4.5 Model for replication timing and mutation rate

The correlation between replication timing and mutation rate can be understood in terms of a model for how cells deal with damaged bases during replication [136]. The genome is subject to numerous types of DNA damage including alkylation, ionizing radiation, UV radiation, and oxidative damage, resulting in a variety of damaged bases [31]. Prior to S-phase, damaged bases are corrected by base excision repair and nucleotide excision repair; however, some damaged bases escape repair and interfere with DNA replication. The replicative DNA polymerases (Polδ and Polε in yeast) have a high processivity and a low error rate; however, they are unable to efficiently incorporate opposite a non-canonical base [36]. Therefore, when a replication fork encounters a lesion, the leading and lagging strands decouple and replication resumes downstream of the lesion [74]. The result is a single-stranded region (including the damaged base) behind the replication fork, known as a daughter-strand gap. There are two ways a cell can fill in this gap: an error-prone method using a translesion polymerase to copy the damaged template or an error-free method using the newly formed sister strand as a template (template switching). Error-free repair can occur as soon as the replication fork has passed and the homologous sequence is available. Recent work suggests that translesion synthesis is used only as a last-ditch effort to fill in these gaps and cannot occur until the end of S-phase (Figure 4-7) [136]. Therefore, regions of the genome that
Figure 4-7. A model for error-free DNA damage tolerance and translesion synthesis. Damaged bases encountered by the replicative polymerase during S-phase result in single-strand gaps behind the replication fork. There are two ways a cell can fill in these gaps: a error-free approach (such as template switching) using the newly formed sister strand as a template, or error-prone translesion synthesis. Error-free DNA damage tolerance can occur as soon as the replication fork has passed and the sister sequence is available. Recent evidence suggests that translesion synthesis does not occur until the end of S-phase and into Mitosis (Waters and Walker 2006). Therefore, regions replicated early are more likely to undergo error-free repair; whereas, regions replicated late are more likely to be subjected to translesion synthesis. This figure is adapted from Waters and Walker (2006).
are replicated early in S-phase have longer to undergo error-free repair to replicate past lesions, whereas regions replicated late are more likely to require translesion synthesis.

It should be noted that the model of temporal separation of error-free repair and translesion synthesis is in contrast with earlier models where translesion synthesis occurs at the replication fork. It was originally thought that when a replicative polymerase encounters a lesion, the replication fork stalls leading to the dissociation of the replicative polymerase. A translesion synthesis polymerase is then used to replicate across the lesion, after which it will dissociate, due to its low processivity, and the replicative polymerase will again take over. Several observations contradict the model of translesion synthesis acting at the replication fork. It has been observed that in a UV-irradiated excision repair-deficient strain, single stranded regions are generated behind the replication fork [74]. The accumulation of single stranded regions is increased in strains deficient in translesion synthesis, homologous recombination, or the DNA damage checkpoint [74]. Disruption of translesion synthesis or checkpoint function only increases single stranded regions late in S-phase; whereas, loss of homologous recombination increases single stranded regions throughout S-phase [74]. In order to test the model that translesion synthesis is operating late in S-phase, expression levels of the three yeast translesion DNA polymerases were monitored during cell cycle progression [136]. Interestingly, Rev1, a translesion DNA polymerase essential for translesion synthesis, is not expressed until late in S-phase and into mitosis, after most of the DNA has been replicated [136]. These results support the model that translesion synthesis is an option of last resort employed to repair daughter-strand gaps in the genome. This model, in turn, provides an explanation for the observation that early replicating regions have a
low mutation rate and late replication regions have a high mutation rate: early replicating regions are more likely to use an error-free mechanism (template switching) to tolerate lesions, whereas late replicating regions are more likely to be subjected to the mutagenic process of translesion synthesis.

To test this model, I deleted the REV1 gene from four strains (two early replicating/low mutation rate and two late replicating/elevated mutation rate). Strains GL·3, GL·15, GL·24, and GL·37 are replicated at 44.5, 43.8, 26.5, and 13.7 minutes, respectively. Disruption of translesion synthesis results in a great reduction of mutation rate in the late replicating/high mutation rate region (Figure 4-8). For early replicating regions with low mutation rates, there is no significant effect of REV1 deletion (Figure 4-8).

4.6 Discussion

In relation to previous work: The correlation between replication timing and mutation rate in this work raises the question why this relationship was not identified in previous studies. Two earlier experiments show that mutation rate varies across the genome for ochre suppressor mutations and frameshifts at microsatellite repeats. In the latter experiment the 16-fold difference in mutation rates in a wild-type strain is reduced to two-fold in an msh2Δ strain, indicating that the observed variation is due to differential ability of mismatch repair across the genome [46]. The variation in mutation rate for the tRNA suppressor mutations can also be explained as variation in the effectiveness of mismatch repair. Much of the observed variation can be attributed to the orientation of
Figure 4-8. Mutation rate variation is dependent upon translesion synthesis. To test the hypothesis that the correlation between replication time and mutation rate is due to the temporal separation of error-free repair and translesion synthesis (Figure 4-7), \textit{REV1} (which encodes a translesion polymerase essential for translesion synthesis) was deleted in four strains that show variation in mutation rate and replication timing. Strains GL·3, GL·15, GL·24, and GL·37 are replicated at 44.5, 43.8, 26.5, and 13.7 minutes, respectively. Disruption of translesion synthesis results in a great reduction of mutation rate in the late replicating/high mutation rate region. For early replicating regions with low mutation rates, there is no significant effect of \textit{REV1} deletion.
the tRNA gene with respect to the nearest origin of replication. The three tRNAs with the lowest mutation frequencies are transcribed in the direction of fork progression; whereas the other five tRNAs are transcribed in the opposite direction [50]. Ochre suppressors arise by a GC to TA transversion in the anticodon of tRNA-Tyr. Therefore, this could by either incorporation of an adenine opposite guanine on one strand or by the incorporation of a thymine opposite cytosine on the opposite strand. A common type oxidative DNA damage is 8-oxo-guanine, which can pair with adenine causing a GC to TA transversion [31]. Mismatch repair is more efficient at correcting 8-oxo-guanine-adenine base pairs on the lagging strand than the leading strand, possibly due to the presence of more nicks on the lagging strand [102]. The tRNA-Tyr alleles with low mutation rates to ochre suppressors are oriented such that adenine incorporation opposite 8-oxo-guanine will occur on the lagging strand, whereas, for the tRNA-Tyr alleles with high mutation rates this will occur on leading strand, and have a greater potential of escaping mismatch repair.

This result shows that orientation with respect to the replication fork can have an impact on mutation rate for a single base-pair substitution; however, this is unlikely to impact mutation rates in my experiment, since I am detecting loss of function mutations over an entire gene, which will average out these small-scale effects. Classifying the strains based upon the orientation of \textit{URA3} with respect to the most likely direction of fork movement does not reveal an orientation bias in my results ($p > 0.05$, Wilcoxon rank-sum). Additionally, orientation relative to the replication fork is not responsible for variation of mutation rate observed for microsatellite frameshift mutations [46].
In these three studies where mutation rate variation was observed across the genome, it is likely that they each has a different underlying mechanism. Variation in the rate of frameshift mutations is largely due to variation in the efficiency of mismatch repair across the genome, although the genomic feature responsible for this variation is unknown. Variation in the rate of tRNA-Tyr ochre suppressor mutations is associated with the orientation of the gene with respect to the nearest replication origin and may result from differential efficiencies of mismatch repair on the leading and lagging strands. In the experiment described in this chapter, mutation rate variation is shown to correlate with replication timing and may result from the temporal separation of error-free repair (template switching) and translesion synthesis. Therefore, the replication profile can impact mutation rate in two ways, by the direction of replication fork movement and the timing of replication. Although the mechanism for variation in microsatellite mutations is unknown, neither replication timing nor orientation can account for it, suggesting that other aspects of genome structure can influence the mutation rate.

Biological significance: An open question in the field of DNA repair is whether translesion synthesis occurs at or behind the replication fork. Based on the observation that the translesion polymerase, Rev1, is not expressed until late S-phase and into Mitosis, it has been proposed that translesion synthesis is separated temporally from error-free methods of DNA damage tolerance such as template switching [136]. In order to minimize mutation rate, it is advantageous to use recombination-based mechanisms of damage tolerance as long as the sister strand is available and employ error-prone translesion synthesis only after the sister chromatids have separated. The observation that early replicating regions have a low mutation rate and late replicating regions have a
high mutation rate supports this model since early replicating regions will have more time to undergo error-free repair and late replicating regions are more likely to subjected to translesion synthesis.

To determine if this mutation rate variation influences the synonymous substitution rate, I compared the measured mutation rates with the synonymous substitution rate between *S. cerevisiae* and *S. paradoxus* and found no correlation (Figure 4-9a, \(p = 0.54 \), Spearman). This is consistent with previous work showing that the synonymous substitution rate between *S. cerevisiae* and *S. paradoxus* does not vary across the genome [10]. One explanation for this is that replication timing may change rapidly on an evolutionary time scale. A survey of nine origins on Chromosome VI shows strain-to-strain variation in the efficiency of at least one origin within *S. cerevisiae* [141]. To examine the synonymous substitution rate over a shorter evolutionary distance, I calculated the synonymous substitution rate between S288c and two other *S. cerevisiae* strains, RM11-1a and YJM789. Figure 4-9b shows that the synonymous substitution within *S. cerevisiae* is correlated to mutation rate (\(p = 0.02 \), Spearman).

Although replication timing may change rapidly on an evolutionary time scale, budding yeast centromeres are consistently replicated early and telomeres are consistently replicated late [105]. It has been observed that essential genes tend to be located near centromeres [130]. This positioning may have been selected for in order to keep essential genes in regions of low mutation rate. Telomeres are sites of rapid genomic change [53]. In *Plasmodium falciparum*, genes families involved in generating antigenic variation are located at the telomeres [35]. Placement of these genes in late replicating regions increases the likelihood that they will be subjected to mutagenic translesion synthesis.
Figure 4-9. Synonymous substitution rate and mutation rate. The synonymous substitution rate between within *S. cerevisiae*, but not between *S. cerevisiae* and *S. paradoxus*, is correlated with mutation rate. The sequences of RM11-1a and YJM789 were obtained from the Broad Institute Fungal Genome Initiative (http://www.broad.mit.edu/annotation/fungi/fgi/) and the Stanford Genome Technology Center (version 2, http://med.stanford.edu/sgtc/research/yjm789.html), respectively. ORFs where S288c contains the allele one of the strains (RM11-1a or YJM789) were excluded from the analysis. Synonymous substitution rates between *S. cerevisiae* and *S. paradoxus* were obtained from Kellis *et al.* (2003). *p*-values were determined using the Spearman rank correlation test.
In this chapter, I have shown that mutation rate varies across the yeast genome and that this variation is correlated to replication timing. This observation supports the model of temporal separation of two mechanisms of DNA damage tolerance (error-free DNA damage tolerance and translesion synthesis). This variation affects the synonymous substitution rate within *S. cerevisiae*; however, since replication timing may change rapidly on an evolutionary time scale, this effect is not detected between *S. cerevisiae* and *S. paradoxus*. Mutation rate variation within the genome may put selective pressure on essential genes to localize to regions, such as centromeres, which consistently replicate early and on rapidly evolving genes to localize to regions such as telomeres, which consistently replicate late.
Chapter 5

Mutation rate variation II: Variation with the duration of the cell cycle, environment, and strain background

5.1 Materials and methods
 Strains
 Fluctuation assays

5.2 Mutations occur at a constant rate per cell division

5.3 Elevation of mutation rate under osmotic stress
 Evidence for elevation of mutation rate
 Strand breakage model for osmotic stress

5.4 Fixation of a mutator allele in a laboratory strain
 Evidence for a mutator phenotype
 Segregation of the mutator phenotype
Abstract

In this chapter, I examine three possible sources of mutation rate variation: the length of the cell cycle, environment, and strain background. Several studies in bacteria and yeast suggest that the per-genome per-generation mutation rate is increased under stress. One possible explanation for this is that if a fraction of mutations occur at a constant rate per unit time, increasing the duration of the cell cycle would increase the mutation rate per genome per generation. Here I show the per-genome per-generation mutation rate is robust to variation in the cell cycle. One exception to this rule is that mutation rate is elevated under osmotic stress. This can be explained by the hypothesis that salt directly damages DNA by inducing strand breaks. In the last section of this chapter, I present evidence that a mutator allele has fixed during propagation of a common laboratory strain.

5.1 Materials and methods

Strains: The strains used in this study are described in Table 5-1. W303 strains originating from our lab are referred to as “derived,” whereas strains constructed from the original W303-1a strain (obtained from R. Rothstein) are referred to as “ancestral.”

Fluctuation assays: For Sections 5.3 and 5.4, fluctuation assays were performed essentially as described in Chapter 2. Each assay was performed in 96-well plates, where 24 cultures were used to determine the cells per culture and 72 cultures were plated to determine the expected number of mutation events per culture, \(m \). The canavanine plates used in this chapter are equivalent to the 1 x canavanine plates described in Chapter 2 (60 mg/L canavanine). Mutation rates were calculated using the Ma-Sandri-Sarkar maximum
<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>JYL338</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 Matα)</td>
</tr>
<tr>
<td>JYL516</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 msh2Δ::KanMX hmlαΔ::LEU2 Matα)</td>
</tr>
<tr>
<td>GIL066</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 hmlαΔ::LEU2 Matα)</td>
</tr>
<tr>
<td>GIL074</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 hog1Δ::KanMX Matα)</td>
</tr>
<tr>
<td>GIL076</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 rad52Δ::KanMX Matα)</td>
</tr>
<tr>
<td>GIL087</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 can1 Matα)</td>
</tr>
<tr>
<td>GIL102</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 hmlαΔ::LEU2 Matα)</td>
</tr>
<tr>
<td>GIL104</td>
<td>W303 (URA3 ade2-1 his3-11,15 leu2-3,112 trp1-1 CAN1 bar1Δ::ADE2 Matα)</td>
</tr>
<tr>
<td>GIL051</td>
<td>S288c (URA3 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 Matα)</td>
</tr>
<tr>
<td>BY4741</td>
<td>S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 Matα)</td>
</tr>
<tr>
<td>YEL020C</td>
<td>S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YEL020CΔ::KanMX Matα)</td>
</tr>
<tr>
<td>YML032C</td>
<td>S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YML032C(rad52)Δ::KanMX Matα)</td>
</tr>
<tr>
<td>YPR032W</td>
<td>S288c (ura3Δ0 his3Δ0 leu2Δ0 trp1Δ0 metΔ0 YPR032W(sro7)Δ::KanMX Matα)</td>
</tr>
</tbody>
</table>
likelihood method [112]. Ninety-five percent confidence intervals on mutation rates were calculated using equations 24 and 25 from [107]. In Section 5.2, a modified fluctuation assay was used to determine mutation rate. This method (the selection/counterselection method) is used to measure mutation rate at URA3 and takes advantage of the fact that one can select both for and against this locus. Briefly a small number of cultures (3 to 10) are grown in synthetic media lacking uracil (SC-Ura) and plated onto 5FOA to determine the frequency or ura3 mutants. The logic behind this assay is that ura3 mutants will arise in the culture during the growth period, but be unable to divide until plated onto 5FOA, thus eliminating jackpot cultures associated with the fluctuation assay. The advantage is that one can use fewer cultures (possibly a single culture) to determine mutation rates. This assay is complicated because uracil auxotrophs eventually die in SC-Ura media and jackpots, due to 5FOA resistance mutations at other loci, can still occur (Appendix A).

5.2 Mutations occur at a constant rate per cell division

It has been proposed that mutation rate is elevated under stress and that this is an adaptive response [29, 108], although this conclusion remains controversial [109]. One explanation for this observation could be that mutations occur at a constant rate per unit time; therefore, when nutrient limitation shows proliferation, the per-generation mutation rate is elevated due to the lengthening of the cell cycle. Previous work in bacteria using tryptophan-limited chemostat cultures suggests shows that mutations indeed do accumulate at a constant rate per unit time [58]. However, this is complicated by the observation that under glucose-limitation mutations accumulate at a constant rate per cell
division [58]. In order to determine if the mutation rate in yeast growing in rich media is constant per unit time or constant per cell division, mutation rates were measured in cultures whose growth rate was slowed by varying concentrations of NaCl, by varying concentrations of the protein synthesis inhibitor, cycloheximide, and using synthetic media with glycerol as the sole carbon source. The results in Figure 5-1 shows that the mutation rate is robust to changes in the duration of the cell cycle caused by low concentrations of cycloheximide or alternative carbon sources out to a doubling time of 650 minutes (the increase in mutation rate due to high salt concentration will be dealt with in the next section). This result is important because it indicates that the mutation rate per generation is constant, consistent with the idea that the majority of mutations occur during S-phase. Since the timing of replication is tightly regulated and highly synchronous, it is likely that slowing the cell cycle does not increase the duration of S-phase; rather, the G1-phase of the cell cycle is extended under these perturbations [45]. This result justifies expressing the mutation rate per cell division, rather than per unit time.

5.3 Elevation of mutation rate under osmotic stress

Evidence for elevation of mutation rate: When determining how the duration of the cell cycle effects mutation rate, I noticed that the per-genome per-generation mutation rate increased in high NaCl concentrations (Figure 5-1). It can be ruled out that this increase is due simply to the slowing of the cell cycle and the accumulation of mutations occurring at a constant rate per unit time. First, slowing the cell cycle by other means fails to increase the mutation rate. In addition, the slope of the increase in mutation rate
Figure 5-1. Mutations occur at a constant rate per cell division. The selection/counterselection method was used to determine mutation frequencies under a variety of conditions that slow the cell cycle. Slowing the cell cycle by altering the carbon source or using low doses of cycloheximide does not increase the mutation frequency; however, mutation rate increases with increasing NaCl concentrations. Each data point is a single culture of JYL338. Four cultures (1 “no stress,” and 3 “cycloheximide”) had a very high mutation frequency compared to the other replicates and were omitted from the analysis. NaCl concentration varied from 0.25 to 1 M. Cycloheximide concentration ranged from 0.025 to 0.2 μg/ml. Three “glycerol” samples were deprived of lysine, further increasing doubling time.
is greater than one, indicating that doubling the length of the cell cycle by increasing the salt concentration more than doubles the mutation rate. This would argue that the effect of high salt on mutation rate cannot be solely due to its effect on growth rate.

An increase in mutation rate is also observed in high sorbitol and high glucose concentrations suggesting that this is an effect of osmotic, and not ionic, stress (Figure 5-2a). In addition, this effect is also observed at the CAN1 locus, showing that this increase in mutation rate is not specific to mutations at URA3 (Figure 5-2b). Osmotic stress cannot be inhibiting some aspect of mismatch repair, since the strain used in Figure 5-2 is msh2Δ and thus defective for mismatch repair.

Strand breakage model for osmotic stress: One possible explanation for the observed increase in mutation rate in response to osmotic stress is that cells may upregulate their mutation rate as a stress response. If this were a general stress response, one might expect the response to be diminished in cells adapted to high salt. A diploid strain adapted to growth in high salt [131] was sporulated and the selection/counterselection assay was performed to determine the mutation rate in the presence and absence of 1 M NaCl for two haploid URA3 spores. Salt-adapted strains display the same increase in mutation rate as non-adapted strains indicating that either the increase in mutation rate is not due to a stress-response or that these strains have not been sufficiently adapted to high salt such that the osmotic stress response is alleviated (data not shown).

Another possible explanation for this observation is that high salt may be genotoxic either by interfering with some aspect of maintaining fidelity or by directly damaging DNA. It has been proposed that osmotic stress is mutagenic in mammalian
Figure 5-2. Mutation rate increases under osmotic stress. (A) Fluctuation assays were performed using strain JYL516 to determine if the increase in mutation rate observed in high salt is also seen using other osmolytes. A low dose of cycloheximide (0.1 μg/ml) was used as control. (B) This increase in mutation rate is also observed at the CAN1 locus.
cells [7, 88] and yeast [100]. Although the molecular basis for this mutagenic effect is unknown, evidence suggests that high osmotic stress inhibits normal DNA repair and checkpoint function and induces double strand breaks [19, 20, 59]. Double strand breaks cause an elevation in the frequency of base pair substitutions [137]. In order to determine if high salt increases base pair substitutions, 48, 24, 21, 24, and 24 independent ura3 loss-of-function alleles were sequenced from wild-type, wild-type + 1 M NaCl, gamma-irradiated wild-type (370 Gy in benomyl/nocodazol arrested cells), msh2Δ, and msh2Δ + 1 M NaCl cultures. Table 5-2 shows that high salt elevates the fraction of base-pair substitutions in the mutational spectra under osmotic stress in both wild-type and msh2Δ strains, a phenomenon that has been correlated with double strand break repair in previous studies; however, in contrast to previous work, the fraction of base-pair substitutions remained the same following gamma-irradiation.

Strains deficient for Rad52 are sensitive to double strand breaks. Thus the hypothesis that high osmotic strength leads to double strand breaks predicts that a rad52Δ strain would be hypersensitive to osmotic stress. The salt-sensitivity experiment was carried out in both S288c and W303 backgrounds (Figures 5-3). Strains were compared to wild type and a known osmo-sensitive strain (sro7Δ or hog1Δ). For each experiment, serial dilutions of each strain were spotted onto either YPD plates or YPD + 1 M NaCl plates. For both strain backgrounds, the rad52Δ strain showed intermediate growth on high salt, whereas all three strains grew nearly equally well on rich media (the W303 rad52Δ strain shows a slight defect on YPD compared to wild-type and hog1Δ strains). Next, the rad52Δ strain (W303 background) was assayed for mutation rate in the
Table 5-2. Mutational spectra

<table>
<thead>
<tr>
<th></th>
<th>MSH2</th>
<th>MSH2 + NaCl</th>
<th>MSH2 + Gamma</th>
<th>msh2Δ</th>
<th>msh2Δ + NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-pair substitutions</td>
<td>32/48</td>
<td>20/24</td>
<td>18/27</td>
<td>11/24</td>
<td>12/22</td>
</tr>
<tr>
<td>Transitions</td>
<td>11/48</td>
<td>6/24</td>
<td>7/27</td>
<td>8/24</td>
<td>7/22</td>
</tr>
<tr>
<td>Transversions</td>
<td>21/48</td>
<td>14/24</td>
<td>11/27</td>
<td>3/24</td>
<td>5/22</td>
</tr>
<tr>
<td>Missense</td>
<td>21/48</td>
<td>11/24</td>
<td>7/27</td>
<td>11/24</td>
<td>9/22</td>
</tr>
<tr>
<td>Nonsense(^1)</td>
<td>11/48</td>
<td>9/24</td>
<td>8/27</td>
<td>_</td>
<td>3/22</td>
</tr>
<tr>
<td>Insertions/Deletions</td>
<td>13/48</td>
<td>4/24</td>
<td>7/27</td>
<td>13/24</td>
<td>9/22</td>
</tr>
<tr>
<td>Poly A/T</td>
<td>1/48</td>
<td>_</td>
<td>_</td>
<td>12/24</td>
<td>9/22</td>
</tr>
<tr>
<td>Non-poly A/T</td>
<td>12/48</td>
<td>3/24</td>
<td>7/27</td>
<td>1/24</td>
<td>_</td>
</tr>
<tr>
<td>Insertions</td>
<td>1/48</td>
<td>_</td>
<td>_</td>
<td>4/24</td>
<td>1/22</td>
</tr>
<tr>
<td>Other</td>
<td>3/48</td>
<td>_</td>
<td>2/27</td>
<td>_</td>
<td>1/22</td>
</tr>
<tr>
<td>Double-mutations</td>
<td>2/48</td>
<td>_</td>
<td>2/27</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Duplications</td>
<td>1/48</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>Unknown(^2)</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>1/22</td>
</tr>
</tbody>
</table>

Strains used in this study: JYL338 (MSH2) and JYL516 (msh2Δ)

\(^1\) Includes start codon mutations

\(^2\) Wild-type URA3 and FUR1
Figure 5-3. Salt sensitivity of a rad52Δ strain. Salt sensitivity was assayed for wild type, rad52Δ, and known salt sensitive strains (sro7Δ or hog1Δ) in both S288c and W303 backgrounds. Duplicate serial dilutions were spotted onto rich media or rich media with 1 M NaCl. The strains used in this experiment are YEL020C (S288c, wild type), YML032C (S288c, rad52Δ), YPR032W (S288c, sro7Δ), GIL066 (W303, wild type), GIL076 (W303, rad52Δ), and GIL074 (W303, hog1Δ).
presence and absence of 1 M NaCl. This strain shows less of an increase in mutation rate in high salt (3.51 x 10^{-7} in 2 x SC versus 4.80 x 10^{-7} in 2 x SC + 1 M NaCl).

The above results: an increase in base-pair substitutions in high salt, salt sensitivity of \(\text{rad52} \Delta \) strains, and a diminished elevation of mutation rate in a \(\text{rad52} \Delta \) strain, are consistent with the hypothesis that high salt increases double strand breaks. The elevation of mutation rate in high salt seen in the \(\text{rad52} \Delta \) strain could be due to production of single strand breaks, which are processed in a Rad52-independent manner.

5.4 Fixation of a mutator allele in a laboratory strain

Evidence for a mutator phenotype: An early observation in my studies of mutation rate is that the mutation rate of mismatch-repair proficient strains in our laboratory (JYL338, GIL066, GIL074, GIL076, and GIL102 in Table 5-1) is higher than published rates, whereas the mutation rate in our mismatch-repair deficient strain (JYL516) is consistent with published rates [142]. These strains share common origin suggesting that our strains contain a mutator allele conferring a five-fold elevation of mutation rate and that this mutator allele is epistatic with the \(msh2 \) deletion since elimination of mismatch repair in our background only confers a 20-fold elevation of mutation rate compared to the 100-fold elevation observed in other strains [142]. This raises the possibility that our strains contain defect in mismatch repair. Given that elimination of \(MSH2 \) has a profound effect on the mutational spectra (enriching for insertion/deletions at polynucleotide runs, compared to our wild-type strain, Table 5-2) it is unlikely that our strains have lost the function of the \(MSH2/MSH3 \) complex, which is primarily responsible for correcting these slippage events [60]. However, \(MSH2 \) also
functions as a heterodimer with \textit{MSH6}, which is primarily responsible for correcting base-pair substitutions [60]. Disruption of \textit{MSH6} in our wild-type background has little effect on the papillation frequency or on the ability of strains to compete with wild type in laboratory competition experiments (D. Thompson, unpublished). In addition, \textit{msh6} mutants are reported to have a 10-fold increase in mutation rate [49]. Sequencing of the \textit{MSH6} gene from our strain background revealed two nonsynonymous substitutions in conserved regions of the protein compared to the sequenced S288c strain.

\textit{Segregation of the mutator phenotype:} To determine the number of genes involved in the mutator phenotype, our W303 strain (JYL338) was crossed to an S288c strain (GIL051) with a 10-fold lower in mutaion rate. Ten tetrads were dissected and fluctuation assays were performed for the 40 spores (Figure 5-4). The cross shows a large amount of variation in mutation rate, which may be due to differences in the strain backgrounds (this cross also shows a large amount of variation in the saturation densities of the cultures, data not shown). Looking for a natural break in the data, I designate mutation rates greater than 1.2×10^{-7} as “elevated.” By looking at the segregation within each tetrad there are five 2:2, three 3:1, and two 4:0 segregants of low and elevated mutation rate, respectively. This is inconsistent with one locus (since all tetrads are expected to show a 2:2 segregation) and with three loci ($p < 0.001$, Chi-square). The data are unable to exclude the possibility of two major-effect loci ($p > 0.15$, Chi-square). In addition, the fraction of spores with high mutation rate (13/40) is consistent with the expected fraction given two loci required for this phenotype (10/40). To determine if the \textit{MSH6} gene contributes to the 10-fold elevation in mutation rate in our laboratory strains, primers specific to the S288c and W303 alleles of were designed and used to determine if
Figure 5-4. Mutation rate variation between common laboratory strains. A complex segregation pattern of mutation rate is observed from a cross between W303 and S288c. Ten tetrads were dissected from a cross between JYL338 (W303) and GIL051 (S288c). Fluctuation assays were performed to determine the mutation rate of each of the 40 spores and PCR genotyping was used to determine the identity of the $MSH6$ allele (which varies by two synonymous substitutions between the parental strains). Mutation is unlinked to the $MSH6$ allele in this cross. The data are inconsistent with locus (since all tetrads are expected to show 2:2 segregation) and with three loci ($p < 0.001$, Chi-square). The data cannot rule out the possibility two major effect loci ($p > 0.15$, Chi-square).
the $MSH6$ alleles segregate with mutation rate in this cross. It is clear from Figure 5-4 that the $MSH6$ allele does not contribute to the different mutation rates between these strains.

In order to determine if the elevation of mutation rate is specific to our laboratory strain or is present in all W303 strains, the original W303-1a strain was obtained (courtesy of R. Rothstein). This strain was transformed with the wild-type $URA3$ gene to generate the strain GIL087. Figure 5-5a shows that the mutator allele is specific to our laboratory strain background. A cross between our derived W303 background and the ancestral W303 background shows that the mutator allele segregates 2:2 (Figures 5-5b, c), suggesting that the mutation rate variation between the ancestral and derived W303 strains is due to a single mutation.

The results from these two crosses imply that the ancestral W303 contains one of the two mutations seen segregating in the cross between the derived W303 strain and S288c. The mutation rate of the ancestral strain in Figure 5-5a is 1.6-fold higher than S288c. Although this is within the error of the fluctuation assay, it is seen consistently from experiment to experiment. As for the mutations responsible for the difference between the ancestral and derived strains of W303, $MSH6$ has been ruled out since both W303 strains contain the same allele and this allele does not segregate with mutation rate in the derived W303/S288c cross. Since the mutation is epistatic with $msh2\Delta$, it is possible that this mutation is itself a partial loss-of-function allele of $MSH2$; however, sequencing of $MSH2$ revealed that W303 and S288c contain the same allele. It remains possible that this mutation is in another component of mismatch repair.
Figure 5-5. A derived laboratory strain of W303 contains a single mutator allele. (A) The W303 strains in our laboratory (“derived”) have an elevated mutation rate compared to S288c and the ancestral W303 strain (obtained from R. Rothstein). Strains used in this experiment are JYL338 (W303, derived), GIL051 (S288c), and GIL087 (W303, ancestral). (B) Ten random segregants from a cross between GIL087 and a derived strain (GIL102) show a segregation pattern indicative of a single mutation effecting mutation rate. (C) Fluctuation assays from all four spores of a single tetrad from the same cross as in (B) shows 2:2 segregation of mutation rate.
Chapter 6

Conclusions and future directions

6.1 Summary of major results
6.2 The concept of effective target size
6.3 Deviations from the Luria-Delbrück distribution
 Detecting deviations from the Luria-Delbrück distribution
 Interpreting deviations from the Luria-Delbrück distribution
6.4 Mutation rate variation between strain backgrounds
6.5 The role of mutator strains in evolution
 Competition experiments and the role of deleterious mutations
 Reversion of mutator alleles
6.6 The importance of mismatch repair in mutation rate variation
6.7 The molecular basis of mutation rate
 The role of translesion synthesis
 Do transient mutators exist?
6.8 Genome structure, function, and evolution
Abstract

I have used an improved method for measuring mutation rates to examine the degree to which mutation rate varies in the yeast, *Saccharomyces cerevisiae*. I determine that mutation rate is robust to variations in the duration of the cell cycle, but varies between strain backgrounds, between environments, and within the genome. In each case, I investigated the mechanism underlying this variation. In Section 6.1, I summarize the work described in this thesis. In Sections 6.2 through 6.4, I discuss extensions of the work described above. In Sections 6.5 through 6.7, I recast my results in terms of the big picture described in Chapter 1. I highlight what I feel are the important unanswered questions and, where possible, I describe experiments aimed at addressing these questions.

6.1 Summary of major results

In this thesis I describe several improvements to the measurement of mutation rates using fluctuation assay. They are as follows:

- Scaling down and semi-automating the fluctuation assay to improve the throughput of this assay (Chapter 2).
- Improving the analysis of data generated from fluctuation assays to detect deviations from the Luria-Delbrück distribution (Chapter 2).
- I provide a definition for the effective target size used to convert phenotypic mutation rates into per-base-pair mutation rates (Chapter 3).
In this thesis I use the fluctuation assay to investigate mutation rate variation. The major results are as follows:

- The per-base-pair per-generation mutation rate varies 2-fold between *URA3* and *CAN1* (3.80 x 10^{-10} and 6.44 x 10^{-10}, respectively, Chapter 3).
- Mutation rate varies 6-fold across yeast Chromosome VI (Chapter 4).
- Mutation rate across Chromosome VI is correlated with replication timing (Chapter 4).
- Mutation rate variation across Chromosome VI is dependent upon translesion synthesis (Chapter 4).
- Mutation rate variation across the genome influences synonymous substitution rates on short time scales and potentially gene location on longer time scales (Chapter 4).
- Mutation rate is robust to variation in the duration of the cell cycle (Chapter 5).
- Mutation rate is elevated in a derived W303 strain compared to the ancestral W303 and S288c strains (Chapter 5).
- Osmotic stress increases mutation rate, possibly by inducing strand breaks (Chapter 5).

6.2 The concept of effective target size

In order to convert phenotypic mutation rates into per-base-pair rates, one needs an estimate of the target size for phenotypic mutations. There are two ways one can think about target size. One can think of target size as the number of possible base changes that can give rise to a phenotype. For the selections described in this thesis, this
corresponds to the number of mutations capable of disrupting protein function and is an inherent property of the sequence. Alternatively one could think probabilistically about target size. I define the effective target size as the size of the genome, G, multiplied by the probability that introducing a single genomic mutation (this could be a base-pair substitution, insertion/deletion, transposition, etc.) will result in the phenotype of interest:

$$\tau = G \cdot P\{\text{mutation results in phenotype} | \text{mutation in genome}\}.$$

The effective target size relates the phenotypic mutation rate to the average per-base-pair mutation rate and the per-genome mutation rate,

$$\frac{\mu_{\text{Can}}}{{\tau}_{\text{Can}}} = \hat{\mu}_{bp} = \frac{U_g}{G},$$

where μ_{Can} is the mutation rate to canavanine resistance, $\hat{\mu}_{bp}$ is the genome-wide average mutation rate per base pair per generation, and U_g is the mutation rate per genome per generation. Similarly,

$$\frac{\mu_{\text{Can}}^{\text{CAN1}}}{{\tau}_{\text{Can}}^{\text{CAN1}}} = \mu_{bp}^{\text{CAN1}},$$

where $\tau^{\text{CAN1}}_{\text{Can}}$ is the locus-specific effective target size for canavanine resistance at the CAN1 locus (the probability of a mutation resulting in canavanine resistance given a mutation at the CAN1 locus) and μ_{bp}^{CAN1} is the average mutation rate per base pair per generation at the CAN1 locus. $\tau^{\text{CAN1}}_{\text{Can}}$ and μ_{bp}^{CAN1} are related to τ_{Can} and $\hat{\mu}_{bp}$ through the parameter λ^{CAN1} which is the ratio of the mutation rate at the CAN1 locus compared to the genome-wide average; $\lambda = 1$ identifies loci where the mutation rate equals the genomic average, loci where $\lambda < 1$ are coldspots, and those where $\lambda > 1$ are hotspots:

$$\lambda^{\text{CAN1}} \cdot \tau^{\text{CAN1}}_{\text{Can}} = \tau_{\text{Can}}^{\text{bp}},$$

and

116
The probabilistic definition of effective target size was put forward for two reasons: (1) to calculate the locus-specific mutation rate per base pair per generation and (2) in response to the observation in Chapter 4 that moving a gene to a different location can change its mutation rate.

6.3 Deviations from the Luria-Delbrück distribution

Detecting deviations from the Luria-Delbrück distribution: Chapter 2 shows that data generated from fluctuation assays often deviate from the expected Luria-Delbrück distribution. In addition to fitting data to the one-parameter Luria-Delbrück distribution, I fit the data to a two-parameter convolution between a Luria-Delbrück distribution and a Poisson distribution, and quantify the improvement of fit by calculating the sum-of-the-squared differences between the cumulative distribution of the data and the theoretical curve for both models. I define the improvement of fit as the decrease in the sum-of-the-square differences between the one-parameter and the two-parameter models and I use Akaike’s information criterion to determine which model best fits the data while using the fewest parameters.

In addition to the improvement of fit metric used in this thesis, other metrics could be used to detect deviations from the Luria-Delbrück distribution. One possibility is to determine the expected number of mutation events per culture, m, for each data set using two methods: the P_0 method using the fraction of cultures with zero mutants, and the Ma-Sandri-Sarkar maximum likelihood method [112] using the number of cultures with one or more mutants, while excluding those cultures with zero mutants. This would
yield two independent estimates of m from the same data set. Comparing the agreement between these estimates of m could serve as an additional method for assessing the quality of data generated from fluctuation assays.

Interpreting deviations from the Luria-Delbrück distribution: In Chapter 2, I used the quality of data assay to show that post-plating growth and mutation occurs on canavanine plates; a result that was confirmed by demonstrating that this effect is diminished by increasing the concentration of canavanine in the media. Other processes that introduce error into mutation rate estimates such as differential growth rates between mutants and non-mutants [143] and poor plating efficiency [124, 126] will also produce deviations from the expected Luria-Delbrück distribution. Therefore, fitting fluctuation data to the cumulative distribution and comparing the sum-of-the-square differences with simulated data is a general method for assaying the quality of data resulting from fluctuation assays.

Testing for deviations from the Luria-Delbrück distribution can be used to ask biologically important questions. For example, mutation rate is believed to increase during meiosis [77]. This conclusion was based upon examining the frequency of mutants before and after sporulation and assumes that no divisions went undetected. An alternative way to address this question is to perform a fluctuation assay using a diploid strain homozygous for the $URA3$ gene near the centromere (to avoid loss of heterozygosity in strains where a mutation has occurred). After the exponential (mitotic) growth period, cultures can be sporulated so that the final cell division will be meiotic. The resulting spores can be assayed for 5FOA resistance. If mutation rate in meiosis is the same as in mitosis the distribution of 5FOA resistant mutants will follow the Luria-
Delbrück distribution. However, if the mutation rate is increased in meiosis, the
distribution of 5FOA resistant mutants will be a convolution of the Luria-Delbrück
distribution and Poisson distributions; a difference that can be detected using the methods
described in Chapter 2.

6.4 Mutation rate variation between strain backgrounds

In Chapter 5, I show that a derived W303 background harbors a single mutation
not present in the ancestral W303 background, which confers a 5-fold elevated mutation
rate. In addition, I show that this mutation is epistatic with an \(msh2\Delta \), suggesting that the
mutation may be in a component of mismatch repair. A candidate gene approach ruled
out \(MSH6 \) and \(MSH2 \) itself. It is possible that the mutation is in another component of
mismatch repair.

There are several observations regarding the difference in mutation rate between
derived and ancestral W303 that warrant discussion here. Table A-1 shows a summary of
62 fluctuation assays using several selections and several strain backgrounds. Although
the derived W303 shows an elevated mutation rate compared to the ancestral W303 for
5FOA resistance and canavanine resistance, there does not appear to be a difference in
mutation rate to \(\alpha \)-factor resistance between these two backgrounds. The simple
explanation for this is that the derived strain used in this study (GIL066) is deleted for the
silent mating cassette, HML\(\alpha \); whereas, the ancestral strain (GIL104) is not (Table 5-1).
Therefore, the ancestral strain possesses an additional mechanism for becoming \(\alpha \)-factor
resistant: gene conversion with HML\(\alpha \). This is consistent with the claim in Chapter 3
that the mutation rate to α-factor resistance in GIL104 is higher than expected given the number of genes involved the mating response.

Another observation, for which I do not have an explanation, is that in Figure 5-5b, the mutation rate of the progeny from a cross between derived and ancestral W303 shows 2:2 segregation; however, none of the progeny have a mutation rate equal to that of the derived W303 parental strain. It could be that this difference is within the error of the fluctuation assay, or it is possible that there is something more complicated at work, which could shed light on the search for genetic basis of the elevated mutation rate in our derived W303 strain background.

Figure 5-4 shows a segregation pattern of mutation rate from a cross between a derived W303 strain and an S288c strain that is most consistent with two major-effect loci. This raises the possibility that the slight difference in mutation rate observed between the ancestral W303 strain and S288c has a genetic basis. Prior to this, I suspected that the slight difference mutation rate between these strains was due to differential growth on 5FOA (Appendix A). To distinguish between these two possibilities, mutation rate can be measured at both $URA3$ and $CAN1$ in a cross between an ancestral W303 strain and S288c.

6.5 The role of mutator strains in evolution

Competition experiments and the role of deleterious mutations: In well-adapted populations, the mutation rate reflects a balance between the costs of accumulating deleterious mutations and maintaining fidelity [13]. However, in environments where beneficial mutations exist, the mutation rate sets the rate of adaptation and higher
mutation rates can be favored. Competition experiments have been used to examine conditions under which mutators are favored [9, 62, 131]. The simplest expectation is that the first population to acquire a beneficial mutation will win; therefore, the outcome of the competition is determined only by the initial frequency of mutators and the strength of the mutator allele. This is insufficient to explain either the results or the dynamics of competition experiments [9, 62, 131]. In reality the outcome of a competition experiment depends upon the initial ratio of mutator to wild type, the population size, the mutation rate, the mutator strength, the ratio of beneficial to deleterious mutations, and the effects of beneficial and deleterious mutations on fitness.

An effect of deleterious mutations can be observed in the early time points of a competition by the initial decrease in the frequency of mutators due to an increasing deleterious load [9]. If the ratio of beneficial to deleterious mutations is low and the fitness effect of deleterious mutations is high then mutators risk being eliminated (or dramatically reduced in frequency) before the first beneficial mutation occurs. This effect becomes more severe in small population sizes. It has been observed in competition experiments that there exists a critical initial frequency of mutators, above the mutators will win the majority of competitions and below which they will lose the majority [62]. This critical frequency increases when the initial population size is decreased. By carefully measuring how the critical frequency changes with population size, one can gain insight into the importance of deleterious mutations in competition experiments.

Reversion of mutator alleles: In natural populations, mutator alleles exist at low frequency due to mutations in genes responsible for maintaining fidelity, such as the
mismatch-repair gene, \textit{MSH2}. Mutator alleles increase fitness by increasing the likelihood that a beneficial mutation will occur; when a beneficial mutation linked to a mutator allele fixes (as in an asexual population), the population becomes entirely mutators. Once a population has become maximally adapted to its environment, selection favors a lower mutation rate and the frequency of mutators should decline, since accruing deleterious mutations imposes a cost that favors reversion of mutator to non-mutator strains \cite{129}. In laboratory experiments, mutators have been found to arise and fix in non-mutator populations \cite{122}, but the reverse has not been observed. The ease with which mutators overtake non-mutator populations in the laboratory raises the question why mutators are not more prevalent in nature. There are three possible explanations. Mutators may not be able to invade non-mutator populations as readily in nature; for instance, if the ratio of beneficial to deleterious mutations is greater under laboratory conditions. This illustrates the need to accurately determine the distribution of fitness effects under a variety of conditions. Another possibility is that mutators are ultimately an evolutionary dead end, because they generate a greater mutational load. The third possibility is that mutators in nature revert to non-mutators when lower mutation rates are favorable.

The simplest mechanism for reversion is a mutation that reverts the mutator allele itself. Assuming that the target size for reversion of an \textit{msh2} allele is 100-times smaller than the target size for the loss-of-function of this gene, and that the \textit{msh2} allele elevates the mutation rate 100-fold, one would expect the rates at which non-mutators are produced in a mutator population and vice-versa to be equal; however, there are several problems with this reasoning. If a lower mutation rate is favored, any second-site
mutation that partially restores Msh2 function will be selected for in the population. Even without selection, a second site mutation could occur and fix through drift. Depending on the nature of the second site mutation, reverting back to wild type may now require two mutations and may require going through an intermediate with an elevated mutation rate. Another obstacle in reverting mutator alleles is that the mutational spectra in a wild type and a mutator will differ. For example, in an \textit{msh2} strain, 50% of \textit{ura3} loss-of-function mutations are frameshifts at polynucleotide runs, compared to < 1% in a wild-type strain. Therefore, it is unlikely that a frameshift mutation that occurred in a non-repetitive sequence in a wild-type strain will be perfectly reverted in an \textit{msh2} strain.

To test the idea that mutator alleles can revert by mutation, one could select for loss-of-function of \textit{msh2} followed by selection for restoration of function. This can be done in a strain with an \textit{MSH2-ADE2} fusion protein. \textit{ade2} cells are adenine auxotrophs and accumulate a red pigment on low-adenine media. Exposing a culture to a series of selective conditions enriches for low frequency mutator alleles within a population. After several rounds of selection, the culture can be plated onto low adenine media and red colonies will indicate strains carrying an \textit{msh2} allele. To select for a compensatory frameshift mutation in the \textit{msh2} background, the cells can be plated onto media lacking adenine. Alternatively, combining the \textit{msh2} allele with a polymerase (\textit{pol32}) mutation, with which it has a synthetic growth defect [98], can select for compensatory mutations. Sequencing can reveal the locations of both mutations and fluctuation assays can be performed to determine how the mutation rate in the reverted strain compares to the wild type and to the mutator. By assaying many combinations of loss-of-function and

123
compensatory mutations, one can gauge the likelihood that mutator populations revert by way of a precise reversion. If mutators cannot easily revert to non-mutators in this way, then an additional mechanism, such as horizontal-gene transfer [15], is necessary to rescue beneficial mutations from a mutator background; therefore, long-term-evolution experiments, where mutators have fixed in the population, and there is no exogenous source of the wild-type allele, may succumb to a mutational meltdown and ultimately be an evolutionary dead end.

6.6 The importance of mismatch repair in mutation rate variation

Throughout this thesis, mismatch repair was invoked as a likely mechanism underlying mutation rate variation. Although mutation rate variation described in Chapter 4 can be attributed to the temporal separation of error-free DNA damage tolerance and translesion synthesis, two previous studies on mutation rate variation within the genome can be attributed to variation in the efficiency of mismatch repair either to correct frameshift mutations in microsatellite sequences [46] or to proofread the leading and lagging strands during replication [50, 102]. Mismatch repair deficiency is the most commonly observed mechanism for the elevation of mutation rate in naturally occurring mutator strains [64, 96] and in mutator strains originating during long-term evolution in the laboratory [122]. Mismatch repair may also be responsible for the mutation rate variation observed between laboratory strains in Chapter 5.

Future work is needed to address why mismatch repair mutators are so common. It is possible that mismatch repair is a large target for mutation or that they are frequently selected since they are among the strongest mutators. Another possibility is that other
mutator alleles are not selected because of an associated fitness cost. In a long-term evolution experiment 4 out of 12 lineages became fixed for mutators, three of which lost mismatch repair function [122]. The other mutator carries a fitness defect, although it unclear if the is a result of the mutator allele itself, a product of the mutator allele, or an unrelated mutation [69].

6.7 The molecular basis of mutation rate

The role of translesion synthesis: Figure 5-1 shows that, in yeast, the mutation rate is constant per cell division, not per unit time. A simple interpretation of this result is that mutations are introduced at a single point in the cell cycle, most likely S-phase. During S-phase there are several processes acting that can contribute to spontaneous mutation rate: DNA replication, mismatch repair, recombination (template switching), and translesion synthesis. Proteins belonging to the RAD6 epistasis group mediate the template switching and translesion synthesis [31]. Deletion of RAD6 disrupts both error-free DNA damage tolerance and translesion synthesis and reduces the spontaneous mutation rate. Disruption of only translesion synthesis (rev1, rev3, or rev7), but not recombination, decreases mutation rate to same extent as a rad6Δ, suggesting that RAD6-dependent mutations result from translesion synthesis [31]. The extent to which mutation rate is decreased in these strains suggests that the majority of spontaneous mutations result from translesion synthesis [61, 106]. Figure 4-8 shows that elimination of the translesion polymerase, REV1, reduces mutation rate by 80% in late replicating regions but has little effect on mutation rate in early replicating regions (Figure 4-8).
What is the mechanism responsible for generating the remainder of spontaneous mutations that occur independently of translesion synthesis? One possibility is that each step involved in maintaining fidelity (such as replication and mismatch repair) has an associated error rate and that the spontaneous mutation rate is a product of those error rates. This would suggest that all cells in a population have the same mutation rate. An alternative possibility is if all proteins involved in maintaining fidelity are present in their optimal concentration, the mutation rate is essentially zero; however, given noise in gene expression and the potential for errors during transcription and translation, cells may fail to produce the amounts and ratios of proteins needed to maintain fidelity and thus transiently possess a substantially elevated mutation rate [93].

Do transient mutators exist?: The results in Chapter 4 show that mutation rate varies spatially within the genome and that this variation is dependent upon translesion synthesis. In order to determine the mechanism for translesion synthesis-independent mutation, I want to test the transient mutator model by asking if mutation rate varies within a population.

The transient-mutator hypothesis makes two testable predictions: the rate of double mutations is greater than the product of the rates of two single mutations; and when a double mutation occurs, both mutations are more likely to be drawn from a single class of mutation rather than the mixture of classes seen when spontaneous mutations are sampled from populations of cells. This second prediction stems from the observation that mutator alleles do not increase the rate of all types of mutation equally; therefore, mutators can often be identified by their mutational spectra. For example, in a *rad27* strain, 75% of *ura3* loss-of-function mutations result from large deletions or duplications
flanked by 5 to 10 base-pair repeats [132]. These events represent 1% of ura3 loss-of-function mutations in a wild-type strain. I have isolated three loss-of-function alleles of ura3, which can be reverted only by this type of mutation (Figure 3-1 and Table 5-2).

Taking a strain containing one of these alleles and selecting simultaneously for reversion of this mutation and for α-factor resistance (or for α-factor resistance alone) will allow me to test both predictions of the transient mutator hypothesis: that mutations to α-factor resistance are more frequent in cells that also have reverted the ura3 mutation, and that most of these mutations will result from large duplications or deletions. If mutation rate is uniform within a population, the probability of α-factor resistance resulting from a large deletion/duplication is 1%, regardless as to whether uracil prototrophy was selected concurrently, as long as genetic mutators are not enriched during selection. In contrast, the transient-mutator model predicts that this probability will vary greatly between these two selections: 1% for α-factor resistance alone and 75% if selection is concurrent with selection for reversion of the ura3 allele. If mutation rate is uniform across a population of cells, it suggests that mutation rate is set by the intrinsic accuracy of DNA replication and repair; however, if the transient-mutator model is correct, it suggests that the mutation rate is set by processes other than replication and repair, such noise in gene expression and errors during transcription and translation.

6.8 Genome structure, function, and evolution

There is an intimate relationship between the structure, function, and evolution of the genome. The genome must be structured such that each chromosome is faithfully replicated and segregated in each cell cycle. This puts a selective pressure on the number
and distribution of replication origins to ensure that the entire genome is replicated before the completion of S-phase. In addition, several genomic features tend to be replicated at particular times: centromeres early and telomeres late. Centromeres must function at the end of S-phase; therefore, it makes sense that they are replicated early so that any daughter-strand gaps have adequate time to be repaired by error-free repair. Telomeres may be replicated late as part of a regulatory mechanism. A recent report shows that the shortening of telomeres relieves repression of a subtelomeric origin, which results in early replication and the recruitment of telomerase [3].

The replication profile, in turn, helps to dictate genomic evolution by biasing the rates and types of mutations occurring across the genome. For instance, mismatch repair is more efficient in correcting mutations on the lagging strand [102]; therefore, the direction of fork movement biases the rate of ochre suppressor mutations [50]. In addition, in Chapter 4, I showed that the timing of replication effects mutation rate, in that, late replicating regions are more likely to be subjected to translesion synthesis and have a higher mutation rate. The relationship between genome structure and evolution is true for karyotype changes as well. The positioning of tRNAs and transposons predisposes particular translocation events [24, 82], and the distribution of essential and dosage-sensitive genes across the genome can restrict which karyotype changes are possible. In Chapter 4, I showed that mutation rate variation within the genome may influence the location of genes such that such essential genes tend to be located near centromeres [130] and genes involved in generating antigenic diversity are located near the telomeres [35]. However, further analyses should be done to determine the effect of replication timing on gene location.
The genome is both the product of and substrate for evolution. It is clear that the mutation rate varies within the genome, between environments and between strain backgrounds. Characterizing this variation and the underlying mechanisms will give us insight into the forces responsible for shaping the genome.
Appendix A

Notes and observations

A.1 Variability of mutation rate estimates from fluctuation assays
A.2 An alternative method for measuring mutation rates
A.3 Mutations observed in the yeast deletion collection
A.4 Growth of W303 and S288c on 5FOA
A.5 Selection for multiple mutations on 5FOA
A.6 Decreased cold tolerance in $msh2\Delta$ strains
Abstract

During the course of my research I made several observation that may be useful for reference or may serve as the basis for future research. Although all of this information is in my notebooks, the purpose here is to present this material in a more organized, accessible form and to comment on these observations with regard to the work in the main body of this thesis.

A.1 Variability of mutation rate estimates from fluctuation assays

Table A-1 summarizes mutation rate estimates from 62 fluctuation assays using different genetic backgrounds, strains, media, and culture volumes. Fluctuation assays performed only a single time are not included in this table, nor are the fluctuation assays from Chapter 4. All assays in Table A-1 were performed in 96-well plates and 72 cultures were plated on selective media to determine the expected number of mutants per culture, m. This table is organized such that fluctuation assays, which are expected to produce similar results, are grouped together, and the average mutation rate is reported. This shows what has been stated several times in this thesis; namely, that there is a great deal of variability in mutation rate estimates from fluctuation assays consistent with the size of the 95% confidence intervals calculated from equations 24 and 25 from [107].

A.2 An alternative method for measuring mutation rates

Because of the difficulties in measuring mutation rates using the fluctuation assay, I sought to develop an alternative method: the selection/counterselection method. This method requires a reporter gene for which one can select both for and against its function,
Table A-1. Variability in mutation rate estimates from fluctuation assays

<table>
<thead>
<tr>
<th>Background</th>
<th>Strain</th>
<th>Vol (µL)</th>
<th>Condition</th>
<th>m</th>
<th>N</th>
<th>μ</th>
<th>\textit{mAverage}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>2.32</td>
<td>11530400</td>
<td>2.01E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>1.46</td>
<td>13127000</td>
<td>1.11E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>2.41</td>
<td>12476200</td>
<td>1.93E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>1.66</td>
<td>16696000</td>
<td>9.94E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>1.08</td>
<td>4147125</td>
<td>1.11E-07</td>
<td>1.44E-07</td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>1.06</td>
<td>6402450</td>
<td>1.66E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC</td>
<td>1.06</td>
<td>13615800</td>
<td>1.42E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC + 1 M NaCl</td>
<td>2.53</td>
<td>6380200</td>
<td>3.97E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL338</td>
<td>100</td>
<td>2 x SC + 1 M NaCl</td>
<td>1.25</td>
<td>8344000</td>
<td>1.50E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>100</td>
<td>2 x SC + 1 M NaCl</td>
<td>1.03</td>
<td>4740400</td>
<td>2.17E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>100</td>
<td>2 x SC + 1 M NaCl</td>
<td>1.02</td>
<td>5916200</td>
<td>1.73E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>100</td>
<td>2 x SC + 1 M NaCl</td>
<td>1.30</td>
<td>5434600</td>
<td>2.39E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>100</td>
<td>YPD + 1 M NaCl</td>
<td>0.97</td>
<td>1537200</td>
<td>6.31E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC</td>
<td>1.71</td>
<td>1399400</td>
<td>1.22E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC</td>
<td>1.80</td>
<td>1229873</td>
<td>1.46E-06</td>
<td>1.39E-06</td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC</td>
<td>1.92</td>
<td>1274631</td>
<td>1.51E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC</td>
<td>0.81</td>
<td>595987</td>
<td>1.36E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC + 1 M NaCl</td>
<td>4.78</td>
<td>919700</td>
<td>5.20E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC + 1 M NaCl</td>
<td>4.75</td>
<td>726453</td>
<td>6.54E-06</td>
<td>5.86E-06</td>
</tr>
<tr>
<td></td>
<td>JYL516</td>
<td>10</td>
<td>2 x SC + 1 M NaCl</td>
<td>5.78</td>
<td>987118</td>
<td>5.86E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL051</td>
<td>100</td>
<td>2 x SC</td>
<td>0.48</td>
<td>18304400</td>
<td>2.65E-08</td>
<td>1.73E-08</td>
</tr>
<tr>
<td></td>
<td>GIL051</td>
<td>100</td>
<td>2 x SC</td>
<td>0.31</td>
<td>26676000</td>
<td>1.16E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL051</td>
<td>100</td>
<td>2 x SC</td>
<td>0.31</td>
<td>22543200</td>
<td>1.38E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL087</td>
<td>100</td>
<td>2 x SC</td>
<td>0.48</td>
<td>11725600</td>
<td>4.07E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL087</td>
<td>100</td>
<td>2 x SC</td>
<td>0.32</td>
<td>10432800</td>
<td>3.08E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.31</td>
<td>20230400</td>
<td>6.49E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.07</td>
<td>22503200</td>
<td>4.77E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.47</td>
<td>20477600</td>
<td>7.19E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.01</td>
<td>19800800</td>
<td>5.08E-08</td>
<td>5.14E-08</td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>0.90</td>
<td>20068000</td>
<td>4.48E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.45</td>
<td>21666400</td>
<td>6.70E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.06</td>
<td>22272800</td>
<td>4.74E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.04</td>
<td>20832000</td>
<td>5.01E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>1.37</td>
<td>19536000</td>
<td>7.03E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>200</td>
<td>2 x SC</td>
<td>0.61</td>
<td>19968800</td>
<td>3.05E-08</td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 (continued).

Mutation rate to 10 x Can

<table>
<thead>
<tr>
<th>Background</th>
<th>Strain</th>
<th>Vol. (µL)</th>
<th>Condition</th>
<th>(m)</th>
<th>(N)</th>
<th>(\mu)</th>
<th>(\mu) AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W303, derived</td>
<td>GIL066</td>
<td>20</td>
<td>2 x SC</td>
<td>0.98</td>
<td>1448160</td>
<td>6.77E-07</td>
<td>6.10E-07</td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>30</td>
<td>2 x SC</td>
<td>1.38</td>
<td>253800</td>
<td>5.42E-07</td>
<td></td>
</tr>
<tr>
<td>W303, ancestral</td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.82</td>
<td>13859040</td>
<td>2.08E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.54</td>
<td>14390000</td>
<td>1.81E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.63</td>
<td>11880000</td>
<td>2.21E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.68</td>
<td>14212000</td>
<td>1.88E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.72</td>
<td>13174000</td>
<td>2.06E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.74</td>
<td>13326400</td>
<td>2.05E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.58</td>
<td>14465600</td>
<td>1.79E-07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>100</td>
<td>2 x SC</td>
<td>2.59</td>
<td>12358400</td>
<td>2.09E-07</td>
<td></td>
</tr>
</tbody>
</table>

Mutation rate to \(\alpha\)-factor

<table>
<thead>
<tr>
<th>Background</th>
<th>Strain</th>
<th>Vol. (µL)</th>
<th>Condition</th>
<th>(m)</th>
<th>(N)</th>
<th>(\mu)</th>
<th>(\mu) AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W303, derived</td>
<td>GIL066</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.47</td>
<td>488640</td>
<td>5.06E-06</td>
<td>5.40E-06</td>
</tr>
<tr>
<td></td>
<td>GIL066</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.51</td>
<td>438800</td>
<td>5.73E-06</td>
<td></td>
</tr>
<tr>
<td>W303, ancestral</td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>1.97</td>
<td>356540</td>
<td>5.51E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.00</td>
<td>362340</td>
<td>5.51E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.24</td>
<td>357372</td>
<td>6.28E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.42</td>
<td>367866</td>
<td>6.58E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.07</td>
<td>370548</td>
<td>5.60E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.30</td>
<td>378342</td>
<td>6.07E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.13</td>
<td>398016</td>
<td>5.35E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.28</td>
<td>376866</td>
<td>6.05E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.31</td>
<td>384390</td>
<td>6.00E-06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIL104</td>
<td>10</td>
<td>SC (0.2% Glucose)</td>
<td>2.23</td>
<td>405630</td>
<td>5.50E-06</td>
<td></td>
</tr>
</tbody>
</table>

Strain descriptions are in Table 5-1 except GIL104, which is described in Chapter 2.

All fluctuation assays in this table were performed in 96-well plates and 72 cultures were used to determine mutation rate. Values for the expected number of mutation events per culture were determined using the Ma-Sandri-Sarkar maximum likelihood method (Sarkar et al. 1992).
such as *URA3*. To perform this assay a small number of cultures (3 to 10) are grown in synthetic media selecting for the function or the reporter (SC-Ura in the case of *URA3*), then plated onto media selecting against function (5FOA for *ura3* mutants). The logic behind this assay is that *ura3* mutants will arise in the culture during the growth period, but be unable to divide until plated onto 5FOA, thus eliminating jackpot cultures associated with the fluctuation assay. The advantage is that one can use fewer cultures (possibly a single culture) to determine mutation rates.

This assay is complicated for two reasons. First, jackpots will still occur due to mutations at loci other than *URA3*. Out of 110 cultures, jackpots (instances where the number of 5FOA mutants was greatly above the mean of other replicates) were observed in 4 cultures. Even after excluding these samples, the variance in the remaining replicates is greater than expected from the Poisson distribution (data not shown). This suggests that the existence mutations in other loci conferring resistance to 5FOA while permitting growth in SC-Ura pose a serious problem to the selection/counterselection method of measuring mutation rate at *URA3*. One way to correct for this is to replica plate onto SC-Ura and subtract from the data those colonies that are uracil prototrophs. There is another complication with the selection/counterselection method: *ura3* mutants lose the ability to form colonies after being quiescent in SC-Ura. To demonstrate this, JYL338 was used to inoculate four 96 well plates, two with 100 µl cultures in SC (fluctuation assays) and two with 100 µl cultures in SC-Ura (selection/counterselection assays). The cultures grew to saturation and were plated on 5FOA. The size of the zero class (the fraction of the cultures without any 5FOA resistant mutants) in the fluctuation assays was 31% and 40%; whereas, the zero class in the selection/counterselection assays
was 78% and 90%, suggesting that uracil auxotrophs cannot form colonies after prolonged exposure media lacking uracil.

It is still possible that the selection/counterselection method of measuring mutation rates will prove to be useful; however, it remains to be shown that, with respect to the fluctuation assay, the selection/counterselection method will be easier to implement for multiple loci and will not increase the uncertainty in mutation rate estimates.

A.3 Mutations observed in the yeast deletion collection

In Chapter 4, the yeast deletion collection was used to aid in construction of the \textit{URA3}-integration strain collection. During this process, 47 Uptags and 5 Downtags were sequenced and three deviations from the reported sequences were observed (Table A-2, several point mutations were also observed; however, since most primer sites were only sequenced to 1 x coverage, they are not reported here). In all three cases the mutation is a combination of a deletion (5 to 7 bases) and a tandem duplication (4 to 8 bases). An additional point mutation was also found in the Uptag of YFR012W, although this may represent a mistake in the sequencing read. In addition, for 5 of the 49 strains, the universal primers (U1 and D1, Table 4-1) were unable to generate a PCR product. For two of those strains, ORF specific primers were able to generate a product over the primer sites, and revealed multiple mutations in both D1 primer-binding sites, which in YFL011W, carried over to the Downtag (Table A-2).
<table>
<thead>
<tr>
<th>Strain</th>
<th>Feature</th>
<th>From deletion project</th>
<th>From sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>YFL023W</td>
<td>Uptag</td>
<td>ATATAGCTCCACATTGCAG</td>
<td>ATATAGCTCCCAPATAGCTCC</td>
</tr>
<tr>
<td>YFR012W</td>
<td>Uptag</td>
<td>CATCAGGACCCTACAGAGAG</td>
<td>CATCAGGATTAGTAGAGAG</td>
</tr>
<tr>
<td>YFL001W</td>
<td>Downtag</td>
<td>TACCGTAGACCATTGCGCAG</td>
<td>TACCGTAGACCATTGATC</td>
</tr>
<tr>
<td>YFL011W</td>
<td>Downtag</td>
<td>TACGGTAGATCAGCATCGGAG</td>
<td>TACGGTAGATCAGCATCGGAG</td>
</tr>
<tr>
<td>YFL011W</td>
<td>Primer D1</td>
<td>CGGTGCAGGGTTACGTTAG</td>
<td>CGGTGCAGGGTTACGTTAG</td>
</tr>
<tr>
<td>YFR030W</td>
<td>Primer D1</td>
<td>CGGTGCGTCTCGTAG</td>
<td>CGGTGCGTCTCGTAG</td>
</tr>
</tbody>
</table>
A.4 Growth of W303 and S288c on 5FOA

Comparison of growth on 5FOA for strains of the W303 and S288c backgrounds shows that W303 forms large uniformly sized colonies with minimal background growth, whereas S288c shows more background growth and forms variably sized colonies that become smaller towards the center of each spot (Figure A-1). From the experiment described in Chapter 4, where *URA3* was integrated at 49 locations across Chromosome VI, it was noticed that two of these strains (GL·31 and GL·35) formed W303-like colonies on 5FOA. This phenotype is not due to the *URA3* reporter or any cis-acting factor, since this phenotype is still observed when *URA3* is integrated on a different chromosome. Backcrossing these strains to S288c (strain BY4742) shows that this phenotype is due to a single locus in each strain and that the locus is linked to the KanMX cassette on Chromosome VI. The progeny from this cross were assayed qualitatively, so it is difficult to determine if the linkage is perfect, leaving two possibilities: deleting either of these ORFs [YFR012W and YFR019W (*FAB1*)] causes this phenotype, or there is another mutation on the right arm of Chromosome VI responsible for this phenotype. These two strains were not produced in the same batch during construction of the yeast deletion collection and other strains produced from the same clone do not show this phenotype. It is not apparent that either gene would be implicated in growth on 5FOA; YFR012W is a hypothetical ORF with no known function and *FAB1* encodes a phosphatidylinositol kinase involved in vacuolar sorting [140]. The observation of this phenotype in W303 and 2 out of 50 S288c strains suggests that many mutations may be available conferring the differential growth phenotype on 5FOA.
Figure A-1. Comparison of growth on 5FOA for strains of the W303 and S288c backgrounds. W303 forms large uniformly sized colonies with minimal background growth; whereas, S288c shows more background growth and forms variably sized colonies that become smaller towards the center of each spot.
A.5 Selection for multiple mutations on 5FOA

Since $URA3$ is a small, conserved gene whose function can be selected for both positively and negatively, it may serve as a useful model for studying protein evolution. In this role it would be useful to select for multiple mutations conferring varying degrees of 5FOA resistance. Figure A-2 shows selection for additional mutations in 5FOA resistant strains that confer an increased growth advantage on this media. 240 single colonies from a fluctuation assay to 5FOA resistance using strain GIL104 were grown to saturation in YPD then pin transferred onto 5FOA. Of the 238 strains that grew, 37 (16%) showed papillation on 5FOA after 10 days of growth. Sequencing of the strains prior to plating on 5FOA shows that each started as a homogeneous culture containing a single 5FOA mutation, with the few exceptions described in Chapter 3. Not much information can be garnered from the existence or number of papillae for an individual strain. Since each culture was grown non-selectively prior to plating, each tube was essentially a single-tube fluctuation assay. Several strains contain the same loss-of-function $ura3$ allele; however, there is no correlation between the identity of the $ura3$ allele and the number of papillae. There are three possibilities for the nature of these mutations: they could be additional loss of function mutations at the already mutated $ura3$ locus, they could be mutations occurring at another locus or loci conferring additional resistance to 5FOA, or they could be mutations increasing the general growth rate irrespective of drug resistance.
Figure A-2. Selection for multiple mutations on 5FOA. 240 single colonies from a fluctuation assay to 5FOA resistance using strain GIL104 were grown to saturation in YPD then pin transferred onto 5FOA. After ten days of growth, two strains failed to grow. Of the remaining 238 strains, 37 (16%) showed papillation on 5FOA.
A.6 Decreased cold tolerance in \textit{msh2}\textDelta\ strains

One disadvantage of mutator strains described in Chapter 1 is that they quickly lose the ability to withstand stressful conditions to which they are not regularly exposed. I have observed an example of this with respect to cold tolerance (Table A-3). 98 single colonies of a wild-type strain and 321 single colonies of an \textit{msh2}\textDelta\ mutator strain were picked off of plates and inoculated into individual wells of 96-well plates. All of the strains grew to saturation then were held at 4° C. After 18 months all of the pellets from the wild type cells were intact and appeared normal; however, in 35 of the 321 \textit{msh2}\textDelta\ strains, intact pellets were not observed, indicating cell lysis. Cells were pin transferred to fresh YPD and grown overnight. All 98 wild-type cells grew in YPD; however, of the 286 \textit{msh2}\textDelta mutator strains with intact pellets, 46 did not grow. Since these strains were picked from a single colony, the simplest explanation for this result is that the \textit{msh2}\textDelta strains acquired cold-sensitive mutations, which were fixed when passaged through the single cell bottleneck.
<table>
<thead>
<tr>
<th></th>
<th>MSH2</th>
<th>msh2Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact pellet</td>
<td>98/98 (100%)</td>
<td>286/321 (89%)</td>
</tr>
<tr>
<td>No intact pellet</td>
<td>0/98 (0%)</td>
<td>35/321 (11%)</td>
</tr>
<tr>
<td>Regrowth</td>
<td>98/98 (100%)</td>
<td>240/286 (84%)</td>
</tr>
<tr>
<td>No regrowth</td>
<td>0/98 (0%)</td>
<td>46/286 (16%)</td>
</tr>
</tbody>
</table>

Strains used in this experiment: JYL338 (MSH2) and JYL516 (msh2Δ). Strains were isolated from single colonies off of 5FOA plates from fluctuation assays. JYL338 was grown in either 2 x SC or 2 x SC + 1 M NaCl. JYL516 was grown in either 2 x SC, 2 x SC + 1 M NaCl, 2 x SC + 1 M Glucose, 2 x SC + 1 M Sorbitol, or 2 x SC 0.1 µg/ml cycloheximide.
Appendix B

Programs to analyze data from fluctuation assays

\texttt{findMLm}
\texttt{findMLmTwoParam}
\texttt{scoreData}
\texttt{scoreDataTwoParam}
\texttt{generateLD}
\texttt{generatePO}
\texttt{generateTwoParam}
\texttt{sampleLD}
\texttt{sampleTwoParam}
\texttt{SSDScoreLD}
\texttt{SSDScoreTwoParam}
Abstract

Several programs were written to aid in the analysis of data from fluctuation assays as described in Chapter 2. All programs were written in Matlab and the code is available online (http://murraylab.mcb.harvard.edu/fluctuation/). A summary and description of each program is provided below.

findMLm

Input: data from fluctuation assay.
Output: most likely value of \(m \) given the data.
Command: findMLm(data)

This program requires the following programs to run:
scoreData, generateLD.

findMLmTwoParam

Input: data from fluctuation assay.
Output: most likely values of \(m \) and \(d \) given the data.
Command: findMLmTwoParameter(data)

This program requires the following programs to run:
scoreDataTwoParam, generateLD, generatePO, generateTwoParam.

scoreData

Input: data from fluctuation assay and \(m \).
Output: -log probability of observing the data given \(m \).
Command: scoreData(data, m)

This program requires the following program to run:
generateLD.

scoreDataTwoParam

Input: data from fluctuation assay, \(m \), and \(d \).
Output: -log probability of observing data given \(m \) and \(d \).
Command: scoreDataTwoParam(data, m, d)

This program requires the following programs to run:
generateLD, generatePO, generateTwoParam.
generateLD

Input: \(m \), and \(max \).
Output: The Luria-Delbrück distribution from 0 to \(max \) with parameter \(m \).
Command: \(\text{generateLD}(m, max) \)

generatePO

Input: \(\lambda \), and \(max \).
Output: The Poisson distribution from 0 to \(max \) with parameter \(\lambda \).
Command: \(\text{generatePO}(\lambda, max) \)

generateTwoParam

Input: \(m \), \(d \), and \(max \).
Output: The combined Luria-Delbrück and Poisson distribution from 0 to \(max \) with parameters \(m \) and \(\lambda = m \times d \).
Command: \(\text{generateTwoParam}(m, d, max) \)

This program requires the following programs to run: generateLD, generatePO.

sampleLD

Input: \(m \), number of \(samples \).
Output: Random variables from the Luria-Delbrück distribution with parameter \(m \).
Command: \(\text{sampleLD}(m, samples) \)

This program requires the following program to run: generateLD.

sampleTwoParam

Input: \(m \), number of \(samples \).
Output: Random variables from a combined Luria-Delbrück and Poisson distribution with parameters \(m \) and \(\lambda = m \times d \).
Command: \(\text{sampleTwoParam}(m, d, samples) \)

This program requires the following programs to run: generateLD, generatePO, generateTwoParam.
SSDScoreLD

Input: \(data \) from fluctuation assay.

Output: sum of the squared differences between the cumulative distribution of the data and the cumulative Luria-Delbrück distribution with parameter \(m \) determined from the data.

Command: SSDScore\((data)\)

This program requires the following programs to run:
findMLm, scoreData, generateLD.

SSDScoreTwoParam

Input: \(data \) from fluctuation assay.

Output: sum of the squared differences between the cumulative distribution of the data and the cumulative combined Luria-Delbrück and Poisson distribution with parameters \(m \) and \(\lambda = m \times d \) determined from the data.

Command: SSDScoreTwoParam\((data)\)

This program requires the following programs to run:
findMLmTwoParam, scoreDataTwoParam, generateLD, generatePO, generateTwoParam.
References

